Loading…

Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm

A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of antennas and propagation 2016-01, Vol.2016 (2016), p.1-9
Main Authors: Chen, Pei, Liu, Chengcheng, Zhao, Yongjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373
cites cdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373
container_end_page 9
container_issue 2016
container_start_page 1
container_title International journal of antennas and propagation
container_volume 2016
creator Chen, Pei
Liu, Chengcheng
Zhao, Yongjun
description A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.
doi_str_mv 10.1155/2016/2438183
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d08df9aeca44d5e8acb67406a8c32f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d08df9aeca44d5e8acb67406a8c32f9</doaj_id><sourcerecordid>4127198161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_BBFKzVm2cJeBF02vyYZDLH7VLbwhahWq_hNT-2WWYma5LpD_CPb7ZTKnjpJQnJh8f75lXVR4IPCOH8kGIiDmnDJJHsVbVHhGxrLtv29fNZdG-rdyltMBaMUrZX_b0IV1PKaGFgm_2NRUcWBhfi4Mc1uky7FdAq3NbLMGx7e-fzPfqZrY27l99W5xDRccp-gOzDiGA0aBluIHoYtUXnkKO_QxdWhzHlOOlHtOjXIfp8Pbyv3jjok_3wtO9Xl9-Pfy1P69WPk7PlYlUD72SuBSGEgeZtIwmmVguJDcUS444R2gAIBiWzMJK4hjoqSdcSxzh3YAQnrGX71dlc1wTYqG0s3cZ7FcCrx4sQ1wpi9rq3ShgsjevAamgaw60EfSXaBguQmlHXlVpf5lrbGP5MNmU1-KRt38Now5RU-XrOeStaUejn_-gmTHEsSYvCoqG0JCnq26x0DClF654bJFjtxqp2Y1VPYy3868yv_Wjg1r-kP83aFmMd_NMEc9xx9gCT4qs_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806422680</pqid></control><display><type>article</type><title>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Chen, Pei ; Liu, Chengcheng ; Zhao, Yongjun</creator><contributor>Villano, Michelangelo</contributor><creatorcontrib>Chen, Pei ; Liu, Chengcheng ; Zhao, Yongjun ; Villano, Michelangelo</creatorcontrib><description>A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.</description><identifier>ISSN: 1687-5869</identifier><identifier>EISSN: 1687-5877</identifier><identifier>DOI: 10.1155/2016/2438183</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive algorithms ; Algorithms ; Arrays ; Beamforming ; Covariance matrix ; Economic models ; Mathematical analysis ; Noise ; Simulation ; Software ; Steering ; Vectors (mathematics)</subject><ispartof>International journal of antennas and propagation, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Pei Chen et al.</rights><rights>Copyright © 2016 Pei Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</citedby><cites>FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</cites><orcidid>0000-0003-3054-9283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1806422680/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1806422680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><contributor>Villano, Michelangelo</contributor><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Liu, Chengcheng</creatorcontrib><creatorcontrib>Zhao, Yongjun</creatorcontrib><title>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</title><title>International journal of antennas and propagation</title><description>A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Covariance matrix</subject><subject>Economic models</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Simulation</subject><subject>Software</subject><subject>Steering</subject><subject>Vectors (mathematics)</subject><issn>1687-5869</issn><issn>1687-5877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c9rFDEUB_BBFKzVm2cJeBF02vyYZDLH7VLbwhahWq_hNT-2WWYma5LpD_CPb7ZTKnjpJQnJh8f75lXVR4IPCOH8kGIiDmnDJJHsVbVHhGxrLtv29fNZdG-rdyltMBaMUrZX_b0IV1PKaGFgm_2NRUcWBhfi4Mc1uky7FdAq3NbLMGx7e-fzPfqZrY27l99W5xDRccp-gOzDiGA0aBluIHoYtUXnkKO_QxdWhzHlOOlHtOjXIfp8Pbyv3jjok_3wtO9Xl9-Pfy1P69WPk7PlYlUD72SuBSGEgeZtIwmmVguJDcUS444R2gAIBiWzMJK4hjoqSdcSxzh3YAQnrGX71dlc1wTYqG0s3cZ7FcCrx4sQ1wpi9rq3ShgsjevAamgaw60EfSXaBguQmlHXlVpf5lrbGP5MNmU1-KRt38Now5RU-XrOeStaUejn_-gmTHEsSYvCoqG0JCnq26x0DClF654bJFjtxqp2Y1VPYy3868yv_Wjg1r-kP83aFmMd_NMEc9xx9gCT4qs_</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Chen, Pei</creator><creator>Liu, Chengcheng</creator><creator>Zhao, Yongjun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3054-9283</orcidid></search><sort><creationdate>20160101</creationdate><title>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</title><author>Chen, Pei ; Liu, Chengcheng ; Zhao, Yongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Covariance matrix</topic><topic>Economic models</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Simulation</topic><topic>Software</topic><topic>Steering</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Liu, Chengcheng</creatorcontrib><creatorcontrib>Zhao, Yongjun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pei</au><au>Liu, Chengcheng</au><au>Zhao, Yongjun</au><au>Villano, Michelangelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</atitle><jtitle>International journal of antennas and propagation</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5869</issn><eissn>1687-5877</eissn><abstract>A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2438183</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3054-9283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5869
ispartof International journal of antennas and propagation, 2016-01, Vol.2016 (2016), p.1-9
issn 1687-5869
1687-5877
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6d08df9aeca44d5e8acb67406a8c32f9
source Publicly Available Content Database; Wiley Open Access Journals
subjects Adaptive algorithms
Algorithms
Arrays
Beamforming
Covariance matrix
Economic models
Mathematical analysis
Noise
Simulation
Software
Steering
Vectors (mathematics)
title Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Beamforming%20Using%20a%20Low-Complexity%20Steering%20Vector%20Estimation%20and%20Covariance%20Matrix%20Reconstruction%20Algorithm&rft.jtitle=International%20journal%20of%20antennas%20and%20propagation&rft.au=Chen,%20Pei&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5869&rft.eissn=1687-5877&rft_id=info:doi/10.1155/2016/2438183&rft_dat=%3Cproquest_doaj_%3E4127198161%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1806422680&rft_id=info:pmid/&rfr_iscdi=true