Loading…
Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm
A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array s...
Saved in:
Published in: | International journal of antennas and propagation 2016-01, Vol.2016 (2016), p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373 |
---|---|
cites | cdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373 |
container_end_page | 9 |
container_issue | 2016 |
container_start_page | 1 |
container_title | International journal of antennas and propagation |
container_volume | 2016 |
creator | Chen, Pei Liu, Chengcheng Zhao, Yongjun |
description | A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods. |
doi_str_mv | 10.1155/2016/2438183 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d08df9aeca44d5e8acb67406a8c32f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d08df9aeca44d5e8acb67406a8c32f9</doaj_id><sourcerecordid>4127198161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_BBFKzVm2cJeBF02vyYZDLH7VLbwhahWq_hNT-2WWYma5LpD_CPb7ZTKnjpJQnJh8f75lXVR4IPCOH8kGIiDmnDJJHsVbVHhGxrLtv29fNZdG-rdyltMBaMUrZX_b0IV1PKaGFgm_2NRUcWBhfi4Mc1uky7FdAq3NbLMGx7e-fzPfqZrY27l99W5xDRccp-gOzDiGA0aBluIHoYtUXnkKO_QxdWhzHlOOlHtOjXIfp8Pbyv3jjok_3wtO9Xl9-Pfy1P69WPk7PlYlUD72SuBSGEgeZtIwmmVguJDcUS444R2gAIBiWzMJK4hjoqSdcSxzh3YAQnrGX71dlc1wTYqG0s3cZ7FcCrx4sQ1wpi9rq3ShgsjevAamgaw60EfSXaBguQmlHXlVpf5lrbGP5MNmU1-KRt38Now5RU-XrOeStaUejn_-gmTHEsSYvCoqG0JCnq26x0DClF654bJFjtxqp2Y1VPYy3868yv_Wjg1r-kP83aFmMd_NMEc9xx9gCT4qs_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806422680</pqid></control><display><type>article</type><title>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Chen, Pei ; Liu, Chengcheng ; Zhao, Yongjun</creator><contributor>Villano, Michelangelo</contributor><creatorcontrib>Chen, Pei ; Liu, Chengcheng ; Zhao, Yongjun ; Villano, Michelangelo</creatorcontrib><description>A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.</description><identifier>ISSN: 1687-5869</identifier><identifier>EISSN: 1687-5877</identifier><identifier>DOI: 10.1155/2016/2438183</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive algorithms ; Algorithms ; Arrays ; Beamforming ; Covariance matrix ; Economic models ; Mathematical analysis ; Noise ; Simulation ; Software ; Steering ; Vectors (mathematics)</subject><ispartof>International journal of antennas and propagation, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Pei Chen et al.</rights><rights>Copyright © 2016 Pei Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</citedby><cites>FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</cites><orcidid>0000-0003-3054-9283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1806422680/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1806422680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><contributor>Villano, Michelangelo</contributor><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Liu, Chengcheng</creatorcontrib><creatorcontrib>Zhao, Yongjun</creatorcontrib><title>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</title><title>International journal of antennas and propagation</title><description>A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Covariance matrix</subject><subject>Economic models</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Simulation</subject><subject>Software</subject><subject>Steering</subject><subject>Vectors (mathematics)</subject><issn>1687-5869</issn><issn>1687-5877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c9rFDEUB_BBFKzVm2cJeBF02vyYZDLH7VLbwhahWq_hNT-2WWYma5LpD_CPb7ZTKnjpJQnJh8f75lXVR4IPCOH8kGIiDmnDJJHsVbVHhGxrLtv29fNZdG-rdyltMBaMUrZX_b0IV1PKaGFgm_2NRUcWBhfi4Mc1uky7FdAq3NbLMGx7e-fzPfqZrY27l99W5xDRccp-gOzDiGA0aBluIHoYtUXnkKO_QxdWhzHlOOlHtOjXIfp8Pbyv3jjok_3wtO9Xl9-Pfy1P69WPk7PlYlUD72SuBSGEgeZtIwmmVguJDcUS444R2gAIBiWzMJK4hjoqSdcSxzh3YAQnrGX71dlc1wTYqG0s3cZ7FcCrx4sQ1wpi9rq3ShgsjevAamgaw60EfSXaBguQmlHXlVpf5lrbGP5MNmU1-KRt38Now5RU-XrOeStaUejn_-gmTHEsSYvCoqG0JCnq26x0DClF654bJFjtxqp2Y1VPYy3868yv_Wjg1r-kP83aFmMd_NMEc9xx9gCT4qs_</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Chen, Pei</creator><creator>Liu, Chengcheng</creator><creator>Zhao, Yongjun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3054-9283</orcidid></search><sort><creationdate>20160101</creationdate><title>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</title><author>Chen, Pei ; Liu, Chengcheng ; Zhao, Yongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Covariance matrix</topic><topic>Economic models</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Simulation</topic><topic>Software</topic><topic>Steering</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Liu, Chengcheng</creatorcontrib><creatorcontrib>Zhao, Yongjun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pei</au><au>Liu, Chengcheng</au><au>Zhao, Yongjun</au><au>Villano, Michelangelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm</atitle><jtitle>International journal of antennas and propagation</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5869</issn><eissn>1687-5877</eissn><abstract>A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2438183</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3054-9283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5869 |
ispartof | International journal of antennas and propagation, 2016-01, Vol.2016 (2016), p.1-9 |
issn | 1687-5869 1687-5877 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6d08df9aeca44d5e8acb67406a8c32f9 |
source | Publicly Available Content Database; Wiley Open Access Journals |
subjects | Adaptive algorithms Algorithms Arrays Beamforming Covariance matrix Economic models Mathematical analysis Noise Simulation Software Steering Vectors (mathematics) |
title | Robust Adaptive Beamforming Using a Low-Complexity Steering Vector Estimation and Covariance Matrix Reconstruction Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Beamforming%20Using%20a%20Low-Complexity%20Steering%20Vector%20Estimation%20and%20Covariance%20Matrix%20Reconstruction%20Algorithm&rft.jtitle=International%20journal%20of%20antennas%20and%20propagation&rft.au=Chen,%20Pei&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5869&rft.eissn=1687-5877&rft_id=info:doi/10.1155/2016/2438183&rft_dat=%3Cproquest_doaj_%3E4127198161%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a598t-61113ac5748102ec680d2080093124aa63a4386d81f42f281971f355fad651373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1806422680&rft_id=info:pmid/&rfr_iscdi=true |