Loading…

Modeling the dispersal effect to reduce the infection of COVID-19 in Bangladesh

In this paper, we propose a four compartmental model to understand the dynamics of infectious disease COVID-19. We show the boundedness and non-negativity of solutions of the model. We analytically calculate the basic reproduction number of the model and perform the stability analysis at the equilib...

Full description

Saved in:
Bibliographic Details
Published in:Sensors international 2020, Vol.1, p.100043-100043, Article 100043
Main Authors: Kabir, M. Humayun, Gani, M. Osman, Mandal, Sajib, Ali Biswas, M. Haider
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a four compartmental model to understand the dynamics of infectious disease COVID-19. We show the boundedness and non-negativity of solutions of the model. We analytically calculate the basic reproduction number of the model and perform the stability analysis at the equilibrium points to understand the epidemic and endemic cases based on the basic reproduction number. Our analytical results show that disease free equilibrium point is asymptotically stable (unstable) and endemic equilibrium point is unstable (asymptotically stable) if the basic reproduction number is less than (greater than) unity. The dispersal rate of the infected population and the social awareness control parameter are the main focus of this study. In our model, these parameters play a vital role to control the spread of COVID-19. Our results reveal that regional lockdown and social awareness (e.g., wearing a face mask, washing hands, social distancing) can reduce the pandemic of the current outbreak of novel coronavirus in a most densely populated country like Bangladesh.
ISSN:2666-3511
2666-3511
DOI:10.1016/j.sintl.2020.100043