Loading…

Fault Knowledge Graph Construction and Platform Development for Aircraft PHM

To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubl...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.24 (1), p.231
Main Authors: Meng, Xiangzhen, Jing, Bo, Wang, Shenglong, Pan, Jinxin, Huang, Yifeng, Jiao, Xiaoxuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493
cites cdi_FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493
container_end_page
container_issue 1
container_start_page 231
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Meng, Xiangzhen
Jing, Bo
Wang, Shenglong
Pan, Jinxin
Huang, Yifeng
Jiao, Xiaoxuan
description To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience. The data source for this study consists of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge graph construction approach is proposed to construct a fault knowledge graph for aircraft health management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic perspective. Additionally, a knowledge graph platform for aircraft health management is developed. The platform includes modules for text classification, knowledge extraction, knowledge auditing, a Q&A system, and graph visualization. These modules improve the management of aircraft health data and provide a foundation for rapid knowledge graph construction and knowledge graph-based fault diagnosis.
doi_str_mv 10.3390/s24010231
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d22abd6d03c4f4b96dcd754425b6e52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779351037</galeid><doaj_id>oai_doaj_org_article_6d22abd6d03c4f4b96dcd754425b6e52</doaj_id><sourcerecordid>A779351037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqWw4A-gSGxgMcX29SNZodFAH2IQXcDacuybqUeJPdhJEf8eD1NGLfLC1vF3z_WxblW9puQcoCUfMuOEEgb0SXVKOeOLhjHy9MH5pHqR85YUBKB5Xp1AwwiQlp1W6wszD1P9JcRfA7oN1pfJ7G7rVQx5SrOdfAy1Ca6-GczUxzTWn_AOh7gbMUx1EeqlTzaZfqpvrr6-rJ71Zsj46n4_q35cfP6-ulqsv11er5brhRWknRbGgDIoOQq0UnElpLFAre162xsiGIqm6XgDUgAqpMCASbCKCtU6dLyFs-r64Oui2epd8qNJv3U0Xv8VYtpokyZvB9TSMWY6Jx0By3vetdJZpwTnTHQSBSteHw9eu7kb0dmSK5nhkenjm-Bv9SbeaUpUQ0E0xeHdvUOKP2fMkx59tjgMJmCcs2YtBV7iCFLQt_-h2zinUP5qTzHVCCZVoc4P1MaUBD70sTS2ZTkcvY0Be1_0pVItCEpgX_D-UGBTzDlhf3w-JXo_Ifo4IYV98zDvkfw3EvAH9RG0YQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912785267</pqid></control><display><type>article</type><title>Fault Knowledge Graph Construction and Platform Development for Aircraft PHM</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Meng, Xiangzhen ; Jing, Bo ; Wang, Shenglong ; Pan, Jinxin ; Huang, Yifeng ; Jiao, Xiaoxuan</creator><creatorcontrib>Meng, Xiangzhen ; Jing, Bo ; Wang, Shenglong ; Pan, Jinxin ; Huang, Yifeng ; Jiao, Xiaoxuan</creatorcontrib><description>To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience. The data source for this study consists of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge graph construction approach is proposed to construct a fault knowledge graph for aircraft health management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic perspective. Additionally, a knowledge graph platform for aircraft health management is developed. The platform includes modules for text classification, knowledge extraction, knowledge auditing, a Q&amp;A system, and graph visualization. These modules improve the management of aircraft health data and provide a foundation for rapid knowledge graph construction and knowledge graph-based fault diagnosis.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24010231</identifier><identifier>PMID: 38203092</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aircraft ; Algorithms ; Construction ; Control systems ; Decision making ; Deep learning ; Efficiency ; Failure ; Fault diagnosis ; Graphs ; joint extraction of entity relationships ; knowledge graph ; Knowledge representation ; PHM ; Q&amp;A system ; Semantics ; Trouble shooting</subject><ispartof>Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.231</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493</citedby><cites>FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493</cites><orcidid>0009-0001-2859-3114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912785267/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912785267?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38203092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Xiangzhen</creatorcontrib><creatorcontrib>Jing, Bo</creatorcontrib><creatorcontrib>Wang, Shenglong</creatorcontrib><creatorcontrib>Pan, Jinxin</creatorcontrib><creatorcontrib>Huang, Yifeng</creatorcontrib><creatorcontrib>Jiao, Xiaoxuan</creatorcontrib><title>Fault Knowledge Graph Construction and Platform Development for Aircraft PHM</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience. The data source for this study consists of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge graph construction approach is proposed to construct a fault knowledge graph for aircraft health management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic perspective. Additionally, a knowledge graph platform for aircraft health management is developed. The platform includes modules for text classification, knowledge extraction, knowledge auditing, a Q&amp;A system, and graph visualization. These modules improve the management of aircraft health data and provide a foundation for rapid knowledge graph construction and knowledge graph-based fault diagnosis.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Construction</subject><subject>Control systems</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Failure</subject><subject>Fault diagnosis</subject><subject>Graphs</subject><subject>joint extraction of entity relationships</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>PHM</subject><subject>Q&amp;A system</subject><subject>Semantics</subject><subject>Trouble shooting</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEoqWw4A-gSGxgMcX29SNZodFAH2IQXcDacuybqUeJPdhJEf8eD1NGLfLC1vF3z_WxblW9puQcoCUfMuOEEgb0SXVKOeOLhjHy9MH5pHqR85YUBKB5Xp1AwwiQlp1W6wszD1P9JcRfA7oN1pfJ7G7rVQx5SrOdfAy1Ca6-GczUxzTWn_AOh7gbMUx1EeqlTzaZfqpvrr6-rJ71Zsj46n4_q35cfP6-ulqsv11er5brhRWknRbGgDIoOQq0UnElpLFAre162xsiGIqm6XgDUgAqpMCASbCKCtU6dLyFs-r64Oui2epd8qNJv3U0Xv8VYtpokyZvB9TSMWY6Jx0By3vetdJZpwTnTHQSBSteHw9eu7kb0dmSK5nhkenjm-Bv9SbeaUpUQ0E0xeHdvUOKP2fMkx59tjgMJmCcs2YtBV7iCFLQt_-h2zinUP5qTzHVCCZVoc4P1MaUBD70sTS2ZTkcvY0Be1_0pVItCEpgX_D-UGBTzDlhf3w-JXo_Ifo4IYV98zDvkfw3EvAH9RG0YQ</recordid><startdate>20231230</startdate><enddate>20231230</enddate><creator>Meng, Xiangzhen</creator><creator>Jing, Bo</creator><creator>Wang, Shenglong</creator><creator>Pan, Jinxin</creator><creator>Huang, Yifeng</creator><creator>Jiao, Xiaoxuan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-2859-3114</orcidid></search><sort><creationdate>20231230</creationdate><title>Fault Knowledge Graph Construction and Platform Development for Aircraft PHM</title><author>Meng, Xiangzhen ; Jing, Bo ; Wang, Shenglong ; Pan, Jinxin ; Huang, Yifeng ; Jiao, Xiaoxuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Construction</topic><topic>Control systems</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Failure</topic><topic>Fault diagnosis</topic><topic>Graphs</topic><topic>joint extraction of entity relationships</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>PHM</topic><topic>Q&amp;A system</topic><topic>Semantics</topic><topic>Trouble shooting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xiangzhen</creatorcontrib><creatorcontrib>Jing, Bo</creatorcontrib><creatorcontrib>Wang, Shenglong</creatorcontrib><creatorcontrib>Pan, Jinxin</creatorcontrib><creatorcontrib>Huang, Yifeng</creatorcontrib><creatorcontrib>Jiao, Xiaoxuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xiangzhen</au><au>Jing, Bo</au><au>Wang, Shenglong</au><au>Pan, Jinxin</au><au>Huang, Yifeng</au><au>Jiao, Xiaoxuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Knowledge Graph Construction and Platform Development for Aircraft PHM</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-12-30</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>231</spage><pages>231-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience. The data source for this study consists of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge graph construction approach is proposed to construct a fault knowledge graph for aircraft health management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic perspective. Additionally, a knowledge graph platform for aircraft health management is developed. The platform includes modules for text classification, knowledge extraction, knowledge auditing, a Q&amp;A system, and graph visualization. These modules improve the management of aircraft health data and provide a foundation for rapid knowledge graph construction and knowledge graph-based fault diagnosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38203092</pmid><doi>10.3390/s24010231</doi><orcidid>https://orcid.org/0009-0001-2859-3114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.231
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6d22abd6d03c4f4b96dcd754425b6e52
source Open Access: PubMed Central; Publicly Available Content Database
subjects Aircraft
Algorithms
Construction
Control systems
Decision making
Deep learning
Efficiency
Failure
Fault diagnosis
Graphs
joint extraction of entity relationships
knowledge graph
Knowledge representation
PHM
Q&A system
Semantics
Trouble shooting
title Fault Knowledge Graph Construction and Platform Development for Aircraft PHM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Knowledge%20Graph%20Construction%20and%20Platform%20Development%20for%20Aircraft%20PHM&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Meng,%20Xiangzhen&rft.date=2023-12-30&rft.volume=24&rft.issue=1&rft.spage=231&rft.pages=231-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24010231&rft_dat=%3Cgale_doaj_%3EA779351037%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-aa37ae64e5ec674756ac31ccbfcfa052e588b483653e7e1323263c71579ded493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912785267&rft_id=info:pmid/38203092&rft_galeid=A779351037&rfr_iscdi=true