Loading…

A modified band approach for the accurate calculation of online photolysis rates in stratospheric-tropospheric Chemical Transport Models

Here we present an efficient and accurate method for the online calculation of photolysis rates relevant to both the stratosphere and troposphere for use in global Chemistry Transport Models and General Circulation Models. The method is a modified version of the band model introduced by Landgraf and...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2006-09, Vol.6 (12), p.4137-4161
Main Authors: Williams, J. E., Landgraf, J., Bregman, A., Walter, H. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we present an efficient and accurate method for the online calculation of photolysis rates relevant to both the stratosphere and troposphere for use in global Chemistry Transport Models and General Circulation Models. The method is a modified version of the band model introduced by Landgraf and Crutzen (1998) which has been updated to improve the performance of the approach for solar zenith angles >72° without the use of any implicit parameterisations. For this purpose, additional sets of band parameters have been defined for instances where the incident angle of the light beam is between 72–93°, in conjunction with a scaling component for the far UV region of the spectrum (λ=178.6–202.0 nm). For incident angles between 85–93° we introduce a modification for pseudo-sphericity that improves the accuracy of the 2-stream approximation. We show that this modified version of the Practical Improved Flux Method (PIFM) is accurate for angles
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-6-4137-2006