Loading…

Enriching Laser Powder Bed Fusion Part Data Using Category Theory

Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Manufacturing and Materials Processing 2024-08, Vol.8 (4), p.130
Main Authors: Qin, Yuchu, Narasimharaju, Shubhavardhan Ramadurga, Qi, Qunfen, Lou, Shan, Zeng, Wenhan, Scott, Paul J., Jiang, Xiangqian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 130
container_title Journal of Manufacturing and Materials Processing
container_volume 8
creator Qin, Yuchu
Narasimharaju, Shubhavardhan Ramadurga
Qi, Qunfen
Lou, Shan
Zeng, Wenhan
Scott, Paul J.
Jiang, Xiangqian
description Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.
doi_str_mv 10.3390/jmmp8040130
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d50e471595d4036a603f19dba9d48c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d50e471595d4036a603f19dba9d48c2</doaj_id><sourcerecordid>3098053750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-9bfb69b53d977749e5f4645c92bd446f564ca256a91c8f38b2298d09ed29fd683</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWLQr_8CASxm9k9cky1pbLRTsol2HTB7tDO2kJlOk_96pFenqO1wO5x4OQg8FPBMi4aXZ7fYCKBQErtAAM6A5pZJeX-hbNEypAQAsWEkkGaDRpI212dTtOpvr5GK2CN-2x6uz2fSQ6tBmCx277E13Olulk2-sO7cO8ZgtN67HPbrxepvc8I93aDWdLMcf-fzzfTYezXODGe5yWfmKy4oRK8uypNIxTzllRuLKUso949RozLiWhRGeiApjKSxIZ7H0lgtyh2bnXBt0o_ax3ul4VEHX6vcQ4lr1RWuzdYpbBo6WBZPMUiBccyC-kLbS0lJhcJ_1eM7ax_B1cKlTTTjEtq-vCEgBjJQMetfT2WViSCk6__-1AHWaXF1MTn4AMYlxSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098053750</pqid></control><display><type>article</type><title>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Qin, Yuchu ; Narasimharaju, Shubhavardhan Ramadurga ; Qi, Qunfen ; Lou, Shan ; Zeng, Wenhan ; Scott, Paul J. ; Jiang, Xiangqian</creator><creatorcontrib>Qin, Yuchu ; Narasimharaju, Shubhavardhan Ramadurga ; Qi, Qunfen ; Lou, Shan ; Zeng, Wenhan ; Scott, Paul J. ; Jiang, Xiangqian</creatorcontrib><description>Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.</description><identifier>ISSN: 2504-4494</identifier><identifier>EISSN: 2504-4494</identifier><identifier>DOI: 10.3390/jmmp8040130</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Barriers ; category theory ; Collaboration ; data modelling ; data semantics ; Design specifications ; Geometry ; Industrial applications ; Knowledge management ; Knowledge representation ; laser powder bed fusion ; Lasers ; Ontology ; part realisation process ; Powder beds ; Process planning ; Product life cycle ; Reproducibility ; Semantic web ; Semantics</subject><ispartof>Journal of Manufacturing and Materials Processing, 2024-08, Vol.8 (4), p.130</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5723-5519 ; 0000-0001-5936-1714 ; 0000-0002-8426-5596 ; 0000-0002-6092-3101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098053750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098053750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Qin, Yuchu</creatorcontrib><creatorcontrib>Narasimharaju, Shubhavardhan Ramadurga</creatorcontrib><creatorcontrib>Qi, Qunfen</creatorcontrib><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><title>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</title><title>Journal of Manufacturing and Materials Processing</title><description>Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.</description><subject>Additive manufacturing</subject><subject>Barriers</subject><subject>category theory</subject><subject>Collaboration</subject><subject>data modelling</subject><subject>data semantics</subject><subject>Design specifications</subject><subject>Geometry</subject><subject>Industrial applications</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>laser powder bed fusion</subject><subject>Lasers</subject><subject>Ontology</subject><subject>part realisation process</subject><subject>Powder beds</subject><subject>Process planning</subject><subject>Product life cycle</subject><subject>Reproducibility</subject><subject>Semantic web</subject><subject>Semantics</subject><issn>2504-4494</issn><issn>2504-4494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLAzEUhYMoWLQr_8CASxm9k9cky1pbLRTsol2HTB7tDO2kJlOk_96pFenqO1wO5x4OQg8FPBMi4aXZ7fYCKBQErtAAM6A5pZJeX-hbNEypAQAsWEkkGaDRpI212dTtOpvr5GK2CN-2x6uz2fSQ6tBmCx277E13Olulk2-sO7cO8ZgtN67HPbrxepvc8I93aDWdLMcf-fzzfTYezXODGe5yWfmKy4oRK8uypNIxTzllRuLKUso949RozLiWhRGeiApjKSxIZ7H0lgtyh2bnXBt0o_ax3ul4VEHX6vcQ4lr1RWuzdYpbBo6WBZPMUiBccyC-kLbS0lJhcJ_1eM7ax_B1cKlTTTjEtq-vCEgBjJQMetfT2WViSCk6__-1AHWaXF1MTn4AMYlxSA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Qin, Yuchu</creator><creator>Narasimharaju, Shubhavardhan Ramadurga</creator><creator>Qi, Qunfen</creator><creator>Lou, Shan</creator><creator>Zeng, Wenhan</creator><creator>Scott, Paul J.</creator><creator>Jiang, Xiangqian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5723-5519</orcidid><orcidid>https://orcid.org/0000-0001-5936-1714</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid></search><sort><creationdate>20240801</creationdate><title>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</title><author>Qin, Yuchu ; Narasimharaju, Shubhavardhan Ramadurga ; Qi, Qunfen ; Lou, Shan ; Zeng, Wenhan ; Scott, Paul J. ; Jiang, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-9bfb69b53d977749e5f4645c92bd446f564ca256a91c8f38b2298d09ed29fd683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>Barriers</topic><topic>category theory</topic><topic>Collaboration</topic><topic>data modelling</topic><topic>data semantics</topic><topic>Design specifications</topic><topic>Geometry</topic><topic>Industrial applications</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>laser powder bed fusion</topic><topic>Lasers</topic><topic>Ontology</topic><topic>part realisation process</topic><topic>Powder beds</topic><topic>Process planning</topic><topic>Product life cycle</topic><topic>Reproducibility</topic><topic>Semantic web</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yuchu</creatorcontrib><creatorcontrib>Narasimharaju, Shubhavardhan Ramadurga</creatorcontrib><creatorcontrib>Qi, Qunfen</creatorcontrib><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yuchu</au><au>Narasimharaju, Shubhavardhan Ramadurga</au><au>Qi, Qunfen</au><au>Lou, Shan</au><au>Zeng, Wenhan</au><au>Scott, Paul J.</au><au>Jiang, Xiangqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</atitle><jtitle>Journal of Manufacturing and Materials Processing</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>130</spage><pages>130-</pages><issn>2504-4494</issn><eissn>2504-4494</eissn><abstract>Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmmp8040130</doi><orcidid>https://orcid.org/0000-0002-5723-5519</orcidid><orcidid>https://orcid.org/0000-0001-5936-1714</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-4494
ispartof Journal of Manufacturing and Materials Processing, 2024-08, Vol.8 (4), p.130
issn 2504-4494
2504-4494
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6d50e471595d4036a603f19dba9d48c2
source Publicly Available Content Database; ABI/INFORM Global
subjects Additive manufacturing
Barriers
category theory
Collaboration
data modelling
data semantics
Design specifications
Geometry
Industrial applications
Knowledge management
Knowledge representation
laser powder bed fusion
Lasers
Ontology
part realisation process
Powder beds
Process planning
Product life cycle
Reproducibility
Semantic web
Semantics
title Enriching Laser Powder Bed Fusion Part Data Using Category Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enriching%20Laser%20Powder%20Bed%20Fusion%20Part%20Data%20Using%20Category%20Theory&rft.jtitle=Journal%20of%20Manufacturing%20and%20Materials%20Processing&rft.au=Qin,%20Yuchu&rft.date=2024-08-01&rft.volume=8&rft.issue=4&rft.spage=130&rft.pages=130-&rft.issn=2504-4494&rft.eissn=2504-4494&rft_id=info:doi/10.3390/jmmp8040130&rft_dat=%3Cproquest_doaj_%3E3098053750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-9bfb69b53d977749e5f4645c92bd446f564ca256a91c8f38b2298d09ed29fd683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098053750&rft_id=info:pmid/&rfr_iscdi=true