Loading…
Enriching Laser Powder Bed Fusion Part Data Using Category Theory
Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacl...
Saved in:
Published in: | Journal of Manufacturing and Materials Processing 2024-08, Vol.8 (4), p.130 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | 130 |
container_title | Journal of Manufacturing and Materials Processing |
container_volume | 8 |
creator | Qin, Yuchu Narasimharaju, Shubhavardhan Ramadurga Qi, Qunfen Lou, Shan Zeng, Wenhan Scott, Paul J. Jiang, Xiangqian |
description | Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon. |
doi_str_mv | 10.3390/jmmp8040130 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d50e471595d4036a603f19dba9d48c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d50e471595d4036a603f19dba9d48c2</doaj_id><sourcerecordid>3098053750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-9bfb69b53d977749e5f4645c92bd446f564ca256a91c8f38b2298d09ed29fd683</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWLQr_8CASxm9k9cky1pbLRTsol2HTB7tDO2kJlOk_96pFenqO1wO5x4OQg8FPBMi4aXZ7fYCKBQErtAAM6A5pZJeX-hbNEypAQAsWEkkGaDRpI212dTtOpvr5GK2CN-2x6uz2fSQ6tBmCx277E13Olulk2-sO7cO8ZgtN67HPbrxepvc8I93aDWdLMcf-fzzfTYezXODGe5yWfmKy4oRK8uypNIxTzllRuLKUso949RozLiWhRGeiApjKSxIZ7H0lgtyh2bnXBt0o_ax3ul4VEHX6vcQ4lr1RWuzdYpbBo6WBZPMUiBccyC-kLbS0lJhcJ_1eM7ax_B1cKlTTTjEtq-vCEgBjJQMetfT2WViSCk6__-1AHWaXF1MTn4AMYlxSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098053750</pqid></control><display><type>article</type><title>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Qin, Yuchu ; Narasimharaju, Shubhavardhan Ramadurga ; Qi, Qunfen ; Lou, Shan ; Zeng, Wenhan ; Scott, Paul J. ; Jiang, Xiangqian</creator><creatorcontrib>Qin, Yuchu ; Narasimharaju, Shubhavardhan Ramadurga ; Qi, Qunfen ; Lou, Shan ; Zeng, Wenhan ; Scott, Paul J. ; Jiang, Xiangqian</creatorcontrib><description>Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.</description><identifier>ISSN: 2504-4494</identifier><identifier>EISSN: 2504-4494</identifier><identifier>DOI: 10.3390/jmmp8040130</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Barriers ; category theory ; Collaboration ; data modelling ; data semantics ; Design specifications ; Geometry ; Industrial applications ; Knowledge management ; Knowledge representation ; laser powder bed fusion ; Lasers ; Ontology ; part realisation process ; Powder beds ; Process planning ; Product life cycle ; Reproducibility ; Semantic web ; Semantics</subject><ispartof>Journal of Manufacturing and Materials Processing, 2024-08, Vol.8 (4), p.130</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5723-5519 ; 0000-0001-5936-1714 ; 0000-0002-8426-5596 ; 0000-0002-6092-3101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098053750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098053750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Qin, Yuchu</creatorcontrib><creatorcontrib>Narasimharaju, Shubhavardhan Ramadurga</creatorcontrib><creatorcontrib>Qi, Qunfen</creatorcontrib><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><title>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</title><title>Journal of Manufacturing and Materials Processing</title><description>Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.</description><subject>Additive manufacturing</subject><subject>Barriers</subject><subject>category theory</subject><subject>Collaboration</subject><subject>data modelling</subject><subject>data semantics</subject><subject>Design specifications</subject><subject>Geometry</subject><subject>Industrial applications</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>laser powder bed fusion</subject><subject>Lasers</subject><subject>Ontology</subject><subject>part realisation process</subject><subject>Powder beds</subject><subject>Process planning</subject><subject>Product life cycle</subject><subject>Reproducibility</subject><subject>Semantic web</subject><subject>Semantics</subject><issn>2504-4494</issn><issn>2504-4494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLAzEUhYMoWLQr_8CASxm9k9cky1pbLRTsol2HTB7tDO2kJlOk_96pFenqO1wO5x4OQg8FPBMi4aXZ7fYCKBQErtAAM6A5pZJeX-hbNEypAQAsWEkkGaDRpI212dTtOpvr5GK2CN-2x6uz2fSQ6tBmCx277E13Olulk2-sO7cO8ZgtN67HPbrxepvc8I93aDWdLMcf-fzzfTYezXODGe5yWfmKy4oRK8uypNIxTzllRuLKUso949RozLiWhRGeiApjKSxIZ7H0lgtyh2bnXBt0o_ax3ul4VEHX6vcQ4lr1RWuzdYpbBo6WBZPMUiBccyC-kLbS0lJhcJ_1eM7ax_B1cKlTTTjEtq-vCEgBjJQMetfT2WViSCk6__-1AHWaXF1MTn4AMYlxSA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Qin, Yuchu</creator><creator>Narasimharaju, Shubhavardhan Ramadurga</creator><creator>Qi, Qunfen</creator><creator>Lou, Shan</creator><creator>Zeng, Wenhan</creator><creator>Scott, Paul J.</creator><creator>Jiang, Xiangqian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5723-5519</orcidid><orcidid>https://orcid.org/0000-0001-5936-1714</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid></search><sort><creationdate>20240801</creationdate><title>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</title><author>Qin, Yuchu ; Narasimharaju, Shubhavardhan Ramadurga ; Qi, Qunfen ; Lou, Shan ; Zeng, Wenhan ; Scott, Paul J. ; Jiang, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-9bfb69b53d977749e5f4645c92bd446f564ca256a91c8f38b2298d09ed29fd683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>Barriers</topic><topic>category theory</topic><topic>Collaboration</topic><topic>data modelling</topic><topic>data semantics</topic><topic>Design specifications</topic><topic>Geometry</topic><topic>Industrial applications</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>laser powder bed fusion</topic><topic>Lasers</topic><topic>Ontology</topic><topic>part realisation process</topic><topic>Powder beds</topic><topic>Process planning</topic><topic>Product life cycle</topic><topic>Reproducibility</topic><topic>Semantic web</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yuchu</creatorcontrib><creatorcontrib>Narasimharaju, Shubhavardhan Ramadurga</creatorcontrib><creatorcontrib>Qi, Qunfen</creatorcontrib><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yuchu</au><au>Narasimharaju, Shubhavardhan Ramadurga</au><au>Qi, Qunfen</au><au>Lou, Shan</au><au>Zeng, Wenhan</au><au>Scott, Paul J.</au><au>Jiang, Xiangqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enriching Laser Powder Bed Fusion Part Data Using Category Theory</atitle><jtitle>Journal of Manufacturing and Materials Processing</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>130</spage><pages>130-</pages><issn>2504-4494</issn><eissn>2504-4494</eissn><abstract>Laser powder bed fusion (LPBF) is a promising metal additive manufacturing technology for producing functional components. However, there are still a lot of obstacles to overcome before this technology is considered mature and trustworthy for wider industrial applications. One of the biggest obstacles is the difficulty in ensuring the repeatability of process and the reproducibility of products. To tackle this challenge, a prerequisite is to represent and communicate the data from the part realisation process in an unambiguous and rigorous manner. In this paper, a semantically enriched LPBF part data model is developed using a category theory-based modelling approach. Firstly, a set of objects and morphisms are created to construct categories for design, process planning, part build, post-processing, and qualification. Twenty functors are then established to communicate these categories. Finally, an application of the developed model is illustrated via the realisation of an LPBF truncheon.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmmp8040130</doi><orcidid>https://orcid.org/0000-0002-5723-5519</orcidid><orcidid>https://orcid.org/0000-0001-5936-1714</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-4494 |
ispartof | Journal of Manufacturing and Materials Processing, 2024-08, Vol.8 (4), p.130 |
issn | 2504-4494 2504-4494 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6d50e471595d4036a603f19dba9d48c2 |
source | Publicly Available Content Database; ABI/INFORM Global |
subjects | Additive manufacturing Barriers category theory Collaboration data modelling data semantics Design specifications Geometry Industrial applications Knowledge management Knowledge representation laser powder bed fusion Lasers Ontology part realisation process Powder beds Process planning Product life cycle Reproducibility Semantic web Semantics |
title | Enriching Laser Powder Bed Fusion Part Data Using Category Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enriching%20Laser%20Powder%20Bed%20Fusion%20Part%20Data%20Using%20Category%20Theory&rft.jtitle=Journal%20of%20Manufacturing%20and%20Materials%20Processing&rft.au=Qin,%20Yuchu&rft.date=2024-08-01&rft.volume=8&rft.issue=4&rft.spage=130&rft.pages=130-&rft.issn=2504-4494&rft.eissn=2504-4494&rft_id=info:doi/10.3390/jmmp8040130&rft_dat=%3Cproquest_doaj_%3E3098053750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-9bfb69b53d977749e5f4645c92bd446f564ca256a91c8f38b2298d09ed29fd683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098053750&rft_id=info:pmid/&rfr_iscdi=true |