Loading…

Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy

Background This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients. Methods Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCG...

Full description

Saved in:
Bibliographic Details
Published in:Cancer medicine (Malden, MA) MA), 2021-09, Vol.10 (18), p.6492-6502
Main Authors: Su, Qiang, Liu, Zhenyu, Chen, Chi, Gao, Han, Zhu, Yongbei, Wang, Liusu, Pan, Meiqing, Liu, Jiangang, Yang, Xin, Tian, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3
cites cdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3
container_end_page 6502
container_issue 18
container_start_page 6492
container_title Cancer medicine (Malden, MA)
container_volume 10
creator Su, Qiang
Liu, Zhenyu
Chen, Chi
Gao, Han
Zhu, Yongbei
Wang, Liusu
Pan, Meiqing
Liu, Jiangang
Yang, Xin
Tian, Jie
description Background This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients. Methods Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs). Results Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733). Conclusions Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa. In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.
doi_str_mv 10.1002/cam4.4092
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d6f4dc40cc7446285e7ce6e68a5b173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d6f4dc40cc7446285e7ce6e68a5b173</doaj_id><sourcerecordid>2566040192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</originalsourceid><addsrcrecordid>eNp1ksluFDEQQFsIRKKQAz-AWuICh0lst5fuC1I0giRSEBc4W9V2ecajXgbbPTA3PoFv5EviWYgSJHwpL6-eyqUqiteUXFBC2KWBnl9w0rBnxSkjXMyUrPjzR_uT4jzGFclLESYVfVmcVJyLitP6tPh5jQOW0S8GSFPAWK4DWm9S2frRLLH3BroyoJlCwMHgn1-_XcCcMIWN3-QnP-QM30PY5jjGBAlLA5kM5RqSxyHFElzKxwB2L0tLDLDevipeOOginh_jWfHt08ev85vZ3Zfr2_nV3cwIJdlMNQ23DnkFwoGqBQXCnKOEiUYKSzm1DJlrWlLX3CpQvEKmjDMKW5Sybauz4vbgtSOs9LFWPYLX-4sxLDSE5E2HWlrpuDWcGKM4l6wWqAxKlDWIlqoquz4cXOup7dGa_LsA3RPp05fBL_Vi3Og664Sss-DdURDG7xPGpHsfDXYdDDhOUTMhJeGENiyjb_9BV-MUhtyqTKmKMVEpkqn3B8rk5seA7qEYSvRuPPRuPPRuPDL75nH1D-TfYcjA5QH44Tvc_t-k51ef-V55D7box2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573225370</pqid></control><display><type>article</type><title>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Su, Qiang ; Liu, Zhenyu ; Chen, Chi ; Gao, Han ; Zhu, Yongbei ; Wang, Liusu ; Pan, Meiqing ; Liu, Jiangang ; Yang, Xin ; Tian, Jie</creator><creatorcontrib>Su, Qiang ; Liu, Zhenyu ; Chen, Chi ; Gao, Han ; Zhu, Yongbei ; Wang, Liusu ; Pan, Meiqing ; Liu, Jiangang ; Yang, Xin ; Tian, Jie</creatorcontrib><description>Background This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients. Methods Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs). Results Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733). Conclusions Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa. In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.</description><identifier>ISSN: 2045-7634</identifier><identifier>EISSN: 2045-7634</identifier><identifier>DOI: 10.1002/cam4.4092</identifier><identifier>PMID: 34453418</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>biochemical recurrence‐free survival ; Bioinformatics ; Biomarkers, Tumor - genetics ; Datasets ; Datasets as Topic ; Disease-Free Survival ; Follow-Up Studies ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; gene signature ; Genomes ; Humans ; Kallikreins - blood ; Kaplan-Meier Estimate ; LASSO‐Cox regression ; Male ; Medical prognosis ; Metastasis ; Multivariate analysis ; Neoplasm Grading ; Neoplasm Recurrence, Local - blood ; Neoplasm Recurrence, Local - diagnosis ; Neoplasm Recurrence, Local - epidemiology ; Neoplasm Recurrence, Local - genetics ; Nomograms ; Patients ; Predictive Value of Tests ; primary prostate cancer ; Prostate cancer ; Prostate-Specific Antigen - blood ; Prostatic Neoplasms - blood ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - mortality ; Prostatic Neoplasms - therapy ; radical therapy ; Regression analysis ; Risk Assessment - methods ; Risk Assessment - statistics &amp; numerical data ; ROC Curve ; Survival ; Transcriptome</subject><ispartof>Cancer medicine (Malden, MA), 2021-09, Vol.10 (18), p.6492-6502</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Cancer Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</citedby><cites>FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</cites><orcidid>0000-0003-0498-0432 ; 0000-0003-3230-2882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2573225370/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2573225370?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34453418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Qiang</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Chen, Chi</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Liusu</creatorcontrib><creatorcontrib>Pan, Meiqing</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><title>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</title><title>Cancer medicine (Malden, MA)</title><addtitle>Cancer Med</addtitle><description>Background This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients. Methods Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs). Results Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733). Conclusions Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa. In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.</description><subject>biochemical recurrence‐free survival</subject><subject>Bioinformatics</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Disease-Free Survival</subject><subject>Follow-Up Studies</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>gene signature</subject><subject>Genomes</subject><subject>Humans</subject><subject>Kallikreins - blood</subject><subject>Kaplan-Meier Estimate</subject><subject>LASSO‐Cox regression</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Multivariate analysis</subject><subject>Neoplasm Grading</subject><subject>Neoplasm Recurrence, Local - blood</subject><subject>Neoplasm Recurrence, Local - diagnosis</subject><subject>Neoplasm Recurrence, Local - epidemiology</subject><subject>Neoplasm Recurrence, Local - genetics</subject><subject>Nomograms</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>primary prostate cancer</subject><subject>Prostate cancer</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatic Neoplasms - blood</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - mortality</subject><subject>Prostatic Neoplasms - therapy</subject><subject>radical therapy</subject><subject>Regression analysis</subject><subject>Risk Assessment - methods</subject><subject>Risk Assessment - statistics &amp; numerical data</subject><subject>ROC Curve</subject><subject>Survival</subject><subject>Transcriptome</subject><issn>2045-7634</issn><issn>2045-7634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ksluFDEQQFsIRKKQAz-AWuICh0lst5fuC1I0giRSEBc4W9V2ecajXgbbPTA3PoFv5EviWYgSJHwpL6-eyqUqiteUXFBC2KWBnl9w0rBnxSkjXMyUrPjzR_uT4jzGFclLESYVfVmcVJyLitP6tPh5jQOW0S8GSFPAWK4DWm9S2frRLLH3BroyoJlCwMHgn1-_XcCcMIWN3-QnP-QM30PY5jjGBAlLA5kM5RqSxyHFElzKxwB2L0tLDLDevipeOOginh_jWfHt08ev85vZ3Zfr2_nV3cwIJdlMNQ23DnkFwoGqBQXCnKOEiUYKSzm1DJlrWlLX3CpQvEKmjDMKW5Sybauz4vbgtSOs9LFWPYLX-4sxLDSE5E2HWlrpuDWcGKM4l6wWqAxKlDWIlqoquz4cXOup7dGa_LsA3RPp05fBL_Vi3Og664Sss-DdURDG7xPGpHsfDXYdDDhOUTMhJeGENiyjb_9BV-MUhtyqTKmKMVEpkqn3B8rk5seA7qEYSvRuPPRuPPRuPDL75nH1D-TfYcjA5QH44Tvc_t-k51ef-V55D7box2w</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Su, Qiang</creator><creator>Liu, Zhenyu</creator><creator>Chen, Chi</creator><creator>Gao, Han</creator><creator>Zhu, Yongbei</creator><creator>Wang, Liusu</creator><creator>Pan, Meiqing</creator><creator>Liu, Jiangang</creator><creator>Yang, Xin</creator><creator>Tian, Jie</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0003-3230-2882</orcidid></search><sort><creationdate>202109</creationdate><title>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</title><author>Su, Qiang ; Liu, Zhenyu ; Chen, Chi ; Gao, Han ; Zhu, Yongbei ; Wang, Liusu ; Pan, Meiqing ; Liu, Jiangang ; Yang, Xin ; Tian, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biochemical recurrence‐free survival</topic><topic>Bioinformatics</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Disease-Free Survival</topic><topic>Follow-Up Studies</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>gene signature</topic><topic>Genomes</topic><topic>Humans</topic><topic>Kallikreins - blood</topic><topic>Kaplan-Meier Estimate</topic><topic>LASSO‐Cox regression</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Multivariate analysis</topic><topic>Neoplasm Grading</topic><topic>Neoplasm Recurrence, Local - blood</topic><topic>Neoplasm Recurrence, Local - diagnosis</topic><topic>Neoplasm Recurrence, Local - epidemiology</topic><topic>Neoplasm Recurrence, Local - genetics</topic><topic>Nomograms</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>primary prostate cancer</topic><topic>Prostate cancer</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatic Neoplasms - blood</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - mortality</topic><topic>Prostatic Neoplasms - therapy</topic><topic>radical therapy</topic><topic>Regression analysis</topic><topic>Risk Assessment - methods</topic><topic>Risk Assessment - statistics &amp; numerical data</topic><topic>ROC Curve</topic><topic>Survival</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Qiang</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Chen, Chi</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Liusu</creatorcontrib><creatorcontrib>Pan, Meiqing</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cancer medicine (Malden, MA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Qiang</au><au>Liu, Zhenyu</au><au>Chen, Chi</au><au>Gao, Han</au><au>Zhu, Yongbei</au><au>Wang, Liusu</au><au>Pan, Meiqing</au><au>Liu, Jiangang</au><au>Yang, Xin</au><au>Tian, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</atitle><jtitle>Cancer medicine (Malden, MA)</jtitle><addtitle>Cancer Med</addtitle><date>2021-09</date><risdate>2021</risdate><volume>10</volume><issue>18</issue><spage>6492</spage><epage>6502</epage><pages>6492-6502</pages><issn>2045-7634</issn><eissn>2045-7634</eissn><abstract>Background This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients. Methods Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs). Results Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733). Conclusions Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa. In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34453418</pmid><doi>10.1002/cam4.4092</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0003-3230-2882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-7634
ispartof Cancer medicine (Malden, MA), 2021-09, Vol.10 (18), p.6492-6502
issn 2045-7634
2045-7634
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6d6f4dc40cc7446285e7ce6e68a5b173
source Open Access: PubMed Central; Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects biochemical recurrence‐free survival
Bioinformatics
Biomarkers, Tumor - genetics
Datasets
Datasets as Topic
Disease-Free Survival
Follow-Up Studies
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
gene signature
Genomes
Humans
Kallikreins - blood
Kaplan-Meier Estimate
LASSO‐Cox regression
Male
Medical prognosis
Metastasis
Multivariate analysis
Neoplasm Grading
Neoplasm Recurrence, Local - blood
Neoplasm Recurrence, Local - diagnosis
Neoplasm Recurrence, Local - epidemiology
Neoplasm Recurrence, Local - genetics
Nomograms
Patients
Predictive Value of Tests
primary prostate cancer
Prostate cancer
Prostate-Specific Antigen - blood
Prostatic Neoplasms - blood
Prostatic Neoplasms - genetics
Prostatic Neoplasms - mortality
Prostatic Neoplasms - therapy
radical therapy
Regression analysis
Risk Assessment - methods
Risk Assessment - statistics & numerical data
ROC Curve
Survival
Transcriptome
title Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20signatures%20predict%20biochemical%20recurrence%E2%80%90free%20survival%20in%20primary%20prostate%20cancer%20patients%20after%20radical%20therapy&rft.jtitle=Cancer%20medicine%20(Malden,%20MA)&rft.au=Su,%20Qiang&rft.date=2021-09&rft.volume=10&rft.issue=18&rft.spage=6492&rft.epage=6502&rft.pages=6492-6502&rft.issn=2045-7634&rft.eissn=2045-7634&rft_id=info:doi/10.1002/cam4.4092&rft_dat=%3Cproquest_doaj_%3E2566040192%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2573225370&rft_id=info:pmid/34453418&rfr_iscdi=true