Loading…
Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy
Background This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients. Methods Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCG...
Saved in:
Published in: | Cancer medicine (Malden, MA) MA), 2021-09, Vol.10 (18), p.6492-6502 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3 |
container_end_page | 6502 |
container_issue | 18 |
container_start_page | 6492 |
container_title | Cancer medicine (Malden, MA) |
container_volume | 10 |
creator | Su, Qiang Liu, Zhenyu Chen, Chi Gao, Han Zhu, Yongbei Wang, Liusu Pan, Meiqing Liu, Jiangang Yang, Xin Tian, Jie |
description | Background
This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients.
Methods
Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs).
Results
Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733).
Conclusions
Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.
In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa. |
doi_str_mv | 10.1002/cam4.4092 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d6f4dc40cc7446285e7ce6e68a5b173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d6f4dc40cc7446285e7ce6e68a5b173</doaj_id><sourcerecordid>2566040192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</originalsourceid><addsrcrecordid>eNp1ksluFDEQQFsIRKKQAz-AWuICh0lst5fuC1I0giRSEBc4W9V2ecajXgbbPTA3PoFv5EviWYgSJHwpL6-eyqUqiteUXFBC2KWBnl9w0rBnxSkjXMyUrPjzR_uT4jzGFclLESYVfVmcVJyLitP6tPh5jQOW0S8GSFPAWK4DWm9S2frRLLH3BroyoJlCwMHgn1-_XcCcMIWN3-QnP-QM30PY5jjGBAlLA5kM5RqSxyHFElzKxwB2L0tLDLDevipeOOginh_jWfHt08ev85vZ3Zfr2_nV3cwIJdlMNQ23DnkFwoGqBQXCnKOEiUYKSzm1DJlrWlLX3CpQvEKmjDMKW5Sybauz4vbgtSOs9LFWPYLX-4sxLDSE5E2HWlrpuDWcGKM4l6wWqAxKlDWIlqoquz4cXOup7dGa_LsA3RPp05fBL_Vi3Og664Sss-DdURDG7xPGpHsfDXYdDDhOUTMhJeGENiyjb_9BV-MUhtyqTKmKMVEpkqn3B8rk5seA7qEYSvRuPPRuPPRuPDL75nH1D-TfYcjA5QH44Tvc_t-k51ef-V55D7box2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573225370</pqid></control><display><type>article</type><title>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Su, Qiang ; Liu, Zhenyu ; Chen, Chi ; Gao, Han ; Zhu, Yongbei ; Wang, Liusu ; Pan, Meiqing ; Liu, Jiangang ; Yang, Xin ; Tian, Jie</creator><creatorcontrib>Su, Qiang ; Liu, Zhenyu ; Chen, Chi ; Gao, Han ; Zhu, Yongbei ; Wang, Liusu ; Pan, Meiqing ; Liu, Jiangang ; Yang, Xin ; Tian, Jie</creatorcontrib><description>Background
This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients.
Methods
Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs).
Results
Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733).
Conclusions
Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.
In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.</description><identifier>ISSN: 2045-7634</identifier><identifier>EISSN: 2045-7634</identifier><identifier>DOI: 10.1002/cam4.4092</identifier><identifier>PMID: 34453418</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>biochemical recurrence‐free survival ; Bioinformatics ; Biomarkers, Tumor - genetics ; Datasets ; Datasets as Topic ; Disease-Free Survival ; Follow-Up Studies ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; gene signature ; Genomes ; Humans ; Kallikreins - blood ; Kaplan-Meier Estimate ; LASSO‐Cox regression ; Male ; Medical prognosis ; Metastasis ; Multivariate analysis ; Neoplasm Grading ; Neoplasm Recurrence, Local - blood ; Neoplasm Recurrence, Local - diagnosis ; Neoplasm Recurrence, Local - epidemiology ; Neoplasm Recurrence, Local - genetics ; Nomograms ; Patients ; Predictive Value of Tests ; primary prostate cancer ; Prostate cancer ; Prostate-Specific Antigen - blood ; Prostatic Neoplasms - blood ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - mortality ; Prostatic Neoplasms - therapy ; radical therapy ; Regression analysis ; Risk Assessment - methods ; Risk Assessment - statistics & numerical data ; ROC Curve ; Survival ; Transcriptome</subject><ispartof>Cancer medicine (Malden, MA), 2021-09, Vol.10 (18), p.6492-6502</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</citedby><cites>FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</cites><orcidid>0000-0003-0498-0432 ; 0000-0003-3230-2882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2573225370/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2573225370?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34453418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Qiang</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Chen, Chi</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Liusu</creatorcontrib><creatorcontrib>Pan, Meiqing</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><title>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</title><title>Cancer medicine (Malden, MA)</title><addtitle>Cancer Med</addtitle><description>Background
This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients.
Methods
Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs).
Results
Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733).
Conclusions
Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.
In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.</description><subject>biochemical recurrence‐free survival</subject><subject>Bioinformatics</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Disease-Free Survival</subject><subject>Follow-Up Studies</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>gene signature</subject><subject>Genomes</subject><subject>Humans</subject><subject>Kallikreins - blood</subject><subject>Kaplan-Meier Estimate</subject><subject>LASSO‐Cox regression</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Multivariate analysis</subject><subject>Neoplasm Grading</subject><subject>Neoplasm Recurrence, Local - blood</subject><subject>Neoplasm Recurrence, Local - diagnosis</subject><subject>Neoplasm Recurrence, Local - epidemiology</subject><subject>Neoplasm Recurrence, Local - genetics</subject><subject>Nomograms</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>primary prostate cancer</subject><subject>Prostate cancer</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatic Neoplasms - blood</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - mortality</subject><subject>Prostatic Neoplasms - therapy</subject><subject>radical therapy</subject><subject>Regression analysis</subject><subject>Risk Assessment - methods</subject><subject>Risk Assessment - statistics & numerical data</subject><subject>ROC Curve</subject><subject>Survival</subject><subject>Transcriptome</subject><issn>2045-7634</issn><issn>2045-7634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ksluFDEQQFsIRKKQAz-AWuICh0lst5fuC1I0giRSEBc4W9V2ecajXgbbPTA3PoFv5EviWYgSJHwpL6-eyqUqiteUXFBC2KWBnl9w0rBnxSkjXMyUrPjzR_uT4jzGFclLESYVfVmcVJyLitP6tPh5jQOW0S8GSFPAWK4DWm9S2frRLLH3BroyoJlCwMHgn1-_XcCcMIWN3-QnP-QM30PY5jjGBAlLA5kM5RqSxyHFElzKxwB2L0tLDLDevipeOOginh_jWfHt08ev85vZ3Zfr2_nV3cwIJdlMNQ23DnkFwoGqBQXCnKOEiUYKSzm1DJlrWlLX3CpQvEKmjDMKW5Sybauz4vbgtSOs9LFWPYLX-4sxLDSE5E2HWlrpuDWcGKM4l6wWqAxKlDWIlqoquz4cXOup7dGa_LsA3RPp05fBL_Vi3Og664Sss-DdURDG7xPGpHsfDXYdDDhOUTMhJeGENiyjb_9BV-MUhtyqTKmKMVEpkqn3B8rk5seA7qEYSvRuPPRuPPRuPDL75nH1D-TfYcjA5QH44Tvc_t-k51ef-V55D7box2w</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Su, Qiang</creator><creator>Liu, Zhenyu</creator><creator>Chen, Chi</creator><creator>Gao, Han</creator><creator>Zhu, Yongbei</creator><creator>Wang, Liusu</creator><creator>Pan, Meiqing</creator><creator>Liu, Jiangang</creator><creator>Yang, Xin</creator><creator>Tian, Jie</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0003-3230-2882</orcidid></search><sort><creationdate>202109</creationdate><title>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</title><author>Su, Qiang ; Liu, Zhenyu ; Chen, Chi ; Gao, Han ; Zhu, Yongbei ; Wang, Liusu ; Pan, Meiqing ; Liu, Jiangang ; Yang, Xin ; Tian, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biochemical recurrence‐free survival</topic><topic>Bioinformatics</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Disease-Free Survival</topic><topic>Follow-Up Studies</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>gene signature</topic><topic>Genomes</topic><topic>Humans</topic><topic>Kallikreins - blood</topic><topic>Kaplan-Meier Estimate</topic><topic>LASSO‐Cox regression</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Multivariate analysis</topic><topic>Neoplasm Grading</topic><topic>Neoplasm Recurrence, Local - blood</topic><topic>Neoplasm Recurrence, Local - diagnosis</topic><topic>Neoplasm Recurrence, Local - epidemiology</topic><topic>Neoplasm Recurrence, Local - genetics</topic><topic>Nomograms</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>primary prostate cancer</topic><topic>Prostate cancer</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatic Neoplasms - blood</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - mortality</topic><topic>Prostatic Neoplasms - therapy</topic><topic>radical therapy</topic><topic>Regression analysis</topic><topic>Risk Assessment - methods</topic><topic>Risk Assessment - statistics & numerical data</topic><topic>ROC Curve</topic><topic>Survival</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Qiang</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Chen, Chi</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Liusu</creatorcontrib><creatorcontrib>Pan, Meiqing</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cancer medicine (Malden, MA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Qiang</au><au>Liu, Zhenyu</au><au>Chen, Chi</au><au>Gao, Han</au><au>Zhu, Yongbei</au><au>Wang, Liusu</au><au>Pan, Meiqing</au><au>Liu, Jiangang</au><au>Yang, Xin</au><au>Tian, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy</atitle><jtitle>Cancer medicine (Malden, MA)</jtitle><addtitle>Cancer Med</addtitle><date>2021-09</date><risdate>2021</risdate><volume>10</volume><issue>18</issue><spage>6492</spage><epage>6502</epage><pages>6492-6502</pages><issn>2045-7634</issn><eissn>2045-7634</eissn><abstract>Background
This study evaluated the predictive value of gene signatures for biochemical recurrence (BCR) in primary prostate cancer (PCa) patients.
Methods
Clinical features and gene expression profiles of PCa patients were attained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, which were further classified into a training set (n = 419), a validation set (n = 403). The least absolute shrinkage and selection operator Cox (LASSO‐Cox) method was used to select discriminative gene signatures in training set for biochemical recurrence‐free survival (BCRFS). Selected gene signatures established a risk score system. Univariate and multivariate analyses of prognostic factors about BCRFS were performed using the Cox proportional hazards regression models. A nomogram based on multivariate analysis was plotted to facilitate clinical application. Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) analyses were then executed for differentially expressed genes (DEGs).
Results
Notably, the risk score could significantly identify BCRFS by time‐dependent receiver operating characteristic (t‐ROC) curves in the training set (3‐year area under the curve (AUC) = 0.820, 5‐year AUC = 0.809) and the validation set (3‐year AUC = 0.723, 5‐year AUC = 0.733).
Conclusions
Clinically, the nomogram model, which incorporates Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.
In this work, we established the risk score consisting of six gene signatures, which can predict biochemical recurrence in primary prostate cancer. Clinically, the nomogram model, which incorporates the Gleason score and the risk score, could effectively predict BCRFS and potentially be utilized as a useful tool for the screening of BCRFS in PCa.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>34453418</pmid><doi>10.1002/cam4.4092</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0003-3230-2882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7634 |
ispartof | Cancer medicine (Malden, MA), 2021-09, Vol.10 (18), p.6492-6502 |
issn | 2045-7634 2045-7634 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6d6f4dc40cc7446285e7ce6e68a5b173 |
source | Open Access: PubMed Central; Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | biochemical recurrence‐free survival Bioinformatics Biomarkers, Tumor - genetics Datasets Datasets as Topic Disease-Free Survival Follow-Up Studies Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic gene signature Genomes Humans Kallikreins - blood Kaplan-Meier Estimate LASSO‐Cox regression Male Medical prognosis Metastasis Multivariate analysis Neoplasm Grading Neoplasm Recurrence, Local - blood Neoplasm Recurrence, Local - diagnosis Neoplasm Recurrence, Local - epidemiology Neoplasm Recurrence, Local - genetics Nomograms Patients Predictive Value of Tests primary prostate cancer Prostate cancer Prostate-Specific Antigen - blood Prostatic Neoplasms - blood Prostatic Neoplasms - genetics Prostatic Neoplasms - mortality Prostatic Neoplasms - therapy radical therapy Regression analysis Risk Assessment - methods Risk Assessment - statistics & numerical data ROC Curve Survival Transcriptome |
title | Gene signatures predict biochemical recurrence‐free survival in primary prostate cancer patients after radical therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20signatures%20predict%20biochemical%20recurrence%E2%80%90free%20survival%20in%20primary%20prostate%20cancer%20patients%20after%20radical%20therapy&rft.jtitle=Cancer%20medicine%20(Malden,%20MA)&rft.au=Su,%20Qiang&rft.date=2021-09&rft.volume=10&rft.issue=18&rft.spage=6492&rft.epage=6502&rft.pages=6492-6502&rft.issn=2045-7634&rft.eissn=2045-7634&rft_id=info:doi/10.1002/cam4.4092&rft_dat=%3Cproquest_doaj_%3E2566040192%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5762-7994dfe43a5fa7851a02ff1025965d141d2e2f9b0884d7a743e27cfc7ebe66bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2573225370&rft_id=info:pmid/34453418&rfr_iscdi=true |