Loading…

Deep-Learning for Radar: A Survey

A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna arra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.141800-141818
Main Authors: Geng, Zhe, Yan, He, Zhang, Jindong, Zhu, Daiyin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283
cites cdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283
container_end_page 141818
container_issue
container_start_page 141800
container_title IEEE access
container_volume 9
creator Geng, Zhe
Yan, He
Zhang, Jindong
Zhu, Daiyin
description A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.
doi_str_mv 10.1109/ACCESS.2021.3119561
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d73ebfe6c7c4161a0b9ea9289e08942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9568916</ieee_id><doaj_id>oai_doaj_org_article_6d73ebfe6c7c4161a0b9ea9289e08942</doaj_id><sourcerecordid>2586592102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0Fvax43prJ1ybeylq1UBCsnkOSnS1bardmW8F_b-qW4lxmeDPvzeMRMgY6AaDmflqWs-VywiiDCQcwUsEFGTBQJueSq8t_8zUZdd2aptIJksWA3D4i7vIFurhttqusbmP25ioXH7JptjzEb_y5IVe123Q4OvUh-XiavZcv-eL1eV5OF3kQVO_zwL0QoSi0qrxBxl3wXgpeaRNqIYPnDLlnvg7Cy-QSDA1GOigCGqYD03xI5r1u1bq13cXm08Uf27rG_gFtXFkX903YoFVVwdHXqEIRBChwNL10Sccg1UawpHXXa-1i-3XAbm_X7SFuk33LpFbSMKDHK95fhdh2XcT6_BWoPUZr-2jtMVp7ijaxxj2rQcQzI620AcV_AYwVccg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586592102</pqid></control><display><type>article</type><title>Deep-Learning for Radar: A Survey</title><source>IEEE Xplore Open Access Journals</source><creator>Geng, Zhe ; Yan, He ; Zhang, Jindong ; Zhu, Daiyin</creator><creatorcontrib>Geng, Zhe ; Yan, He ; Zhang, Jindong ; Zhu, Daiyin</creatorcontrib><description>A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3119561</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adversarial examples ; Algorithms ; Antenna arrays ; Antenna design ; Artificial neural networks ; Automatic target recognition ; automatic target recognition (ATR) ; Clutter ; Deep learning ; Interception ; Interference ; Jamming ; jamming recognition ; Machine learning ; Neural networks ; Object recognition ; Radar ; Radar applications ; Radar arrays ; Radar imaging ; Radar signal processing ; Radar signatures ; radar waveform recognition ; Signal processing ; Signal processing algorithms ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Waveforms</subject><ispartof>IEEE access, 2021, Vol.9, p.141800-141818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</citedby><cites>FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</cites><orcidid>0000-0002-5855-8635 ; 0000-0002-9882-351X ; 0000-0002-5440-3556 ; 0000-0001-6464-6431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9568916$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Geng, Zhe</creatorcontrib><creatorcontrib>Yan, He</creatorcontrib><creatorcontrib>Zhang, Jindong</creatorcontrib><creatorcontrib>Zhu, Daiyin</creatorcontrib><title>Deep-Learning for Radar: A Survey</title><title>IEEE access</title><addtitle>Access</addtitle><description>A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.</description><subject>adversarial examples</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Artificial neural networks</subject><subject>Automatic target recognition</subject><subject>automatic target recognition (ATR)</subject><subject>Clutter</subject><subject>Deep learning</subject><subject>Interception</subject><subject>Interference</subject><subject>Jamming</subject><subject>jamming recognition</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Radar</subject><subject>Radar applications</subject><subject>Radar arrays</subject><subject>Radar imaging</subject><subject>Radar signal processing</subject><subject>Radar signatures</subject><subject>radar waveform recognition</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Waveforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0Fvax43prJ1ybeylq1UBCsnkOSnS1bardmW8F_b-qW4lxmeDPvzeMRMgY6AaDmflqWs-VywiiDCQcwUsEFGTBQJueSq8t_8zUZdd2aptIJksWA3D4i7vIFurhttqusbmP25ioXH7JptjzEb_y5IVe123Q4OvUh-XiavZcv-eL1eV5OF3kQVO_zwL0QoSi0qrxBxl3wXgpeaRNqIYPnDLlnvg7Cy-QSDA1GOigCGqYD03xI5r1u1bq13cXm08Uf27rG_gFtXFkX903YoFVVwdHXqEIRBChwNL10Sccg1UawpHXXa-1i-3XAbm_X7SFuk33LpFbSMKDHK95fhdh2XcT6_BWoPUZr-2jtMVp7ijaxxj2rQcQzI620AcV_AYwVccg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Geng, Zhe</creator><creator>Yan, He</creator><creator>Zhang, Jindong</creator><creator>Zhu, Daiyin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5855-8635</orcidid><orcidid>https://orcid.org/0000-0002-9882-351X</orcidid><orcidid>https://orcid.org/0000-0002-5440-3556</orcidid><orcidid>https://orcid.org/0000-0001-6464-6431</orcidid></search><sort><creationdate>2021</creationdate><title>Deep-Learning for Radar: A Survey</title><author>Geng, Zhe ; Yan, He ; Zhang, Jindong ; Zhu, Daiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adversarial examples</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Artificial neural networks</topic><topic>Automatic target recognition</topic><topic>automatic target recognition (ATR)</topic><topic>Clutter</topic><topic>Deep learning</topic><topic>Interception</topic><topic>Interference</topic><topic>Jamming</topic><topic>jamming recognition</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Radar</topic><topic>Radar applications</topic><topic>Radar arrays</topic><topic>Radar imaging</topic><topic>Radar signal processing</topic><topic>Radar signatures</topic><topic>radar waveform recognition</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Zhe</creatorcontrib><creatorcontrib>Yan, He</creatorcontrib><creatorcontrib>Zhang, Jindong</creatorcontrib><creatorcontrib>Zhu, Daiyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Zhe</au><au>Yan, He</au><au>Zhang, Jindong</au><au>Zhu, Daiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning for Radar: A Survey</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>141800</spage><epage>141818</epage><pages>141800-141818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3119561</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5855-8635</orcidid><orcidid>https://orcid.org/0000-0002-9882-351X</orcidid><orcidid>https://orcid.org/0000-0002-5440-3556</orcidid><orcidid>https://orcid.org/0000-0001-6464-6431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.141800-141818
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6d73ebfe6c7c4161a0b9ea9289e08942
source IEEE Xplore Open Access Journals
subjects adversarial examples
Algorithms
Antenna arrays
Antenna design
Artificial neural networks
Automatic target recognition
automatic target recognition (ATR)
Clutter
Deep learning
Interception
Interference
Jamming
jamming recognition
Machine learning
Neural networks
Object recognition
Radar
Radar applications
Radar arrays
Radar imaging
Radar signal processing
Radar signatures
radar waveform recognition
Signal processing
Signal processing algorithms
Synthetic aperture radar
synthetic aperture radar (SAR)
Waveforms
title Deep-Learning for Radar: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20for%20Radar:%20A%20Survey&rft.jtitle=IEEE%20access&rft.au=Geng,%20Zhe&rft.date=2021&rft.volume=9&rft.spage=141800&rft.epage=141818&rft.pages=141800-141818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3119561&rft_dat=%3Cproquest_doaj_%3E2586592102%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586592102&rft_id=info:pmid/&rft_ieee_id=9568916&rfr_iscdi=true