Loading…
Deep-Learning for Radar: A Survey
A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna arra...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.141800-141818 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283 |
container_end_page | 141818 |
container_issue | |
container_start_page | 141800 |
container_title | IEEE access |
container_volume | 9 |
creator | Geng, Zhe Yan, He Zhang, Jindong Zhu, Daiyin |
description | A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field. |
doi_str_mv | 10.1109/ACCESS.2021.3119561 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6d73ebfe6c7c4161a0b9ea9289e08942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9568916</ieee_id><doaj_id>oai_doaj_org_article_6d73ebfe6c7c4161a0b9ea9289e08942</doaj_id><sourcerecordid>2586592102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0Fvax43prJ1ybeylq1UBCsnkOSnS1bardmW8F_b-qW4lxmeDPvzeMRMgY6AaDmflqWs-VywiiDCQcwUsEFGTBQJueSq8t_8zUZdd2aptIJksWA3D4i7vIFurhttqusbmP25ioXH7JptjzEb_y5IVe123Q4OvUh-XiavZcv-eL1eV5OF3kQVO_zwL0QoSi0qrxBxl3wXgpeaRNqIYPnDLlnvg7Cy-QSDA1GOigCGqYD03xI5r1u1bq13cXm08Uf27rG_gFtXFkX903YoFVVwdHXqEIRBChwNL10Sccg1UawpHXXa-1i-3XAbm_X7SFuk33LpFbSMKDHK95fhdh2XcT6_BWoPUZr-2jtMVp7ijaxxj2rQcQzI620AcV_AYwVccg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586592102</pqid></control><display><type>article</type><title>Deep-Learning for Radar: A Survey</title><source>IEEE Xplore Open Access Journals</source><creator>Geng, Zhe ; Yan, He ; Zhang, Jindong ; Zhu, Daiyin</creator><creatorcontrib>Geng, Zhe ; Yan, He ; Zhang, Jindong ; Zhu, Daiyin</creatorcontrib><description>A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3119561</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adversarial examples ; Algorithms ; Antenna arrays ; Antenna design ; Artificial neural networks ; Automatic target recognition ; automatic target recognition (ATR) ; Clutter ; Deep learning ; Interception ; Interference ; Jamming ; jamming recognition ; Machine learning ; Neural networks ; Object recognition ; Radar ; Radar applications ; Radar arrays ; Radar imaging ; Radar signal processing ; Radar signatures ; radar waveform recognition ; Signal processing ; Signal processing algorithms ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Waveforms</subject><ispartof>IEEE access, 2021, Vol.9, p.141800-141818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</citedby><cites>FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</cites><orcidid>0000-0002-5855-8635 ; 0000-0002-9882-351X ; 0000-0002-5440-3556 ; 0000-0001-6464-6431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9568916$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Geng, Zhe</creatorcontrib><creatorcontrib>Yan, He</creatorcontrib><creatorcontrib>Zhang, Jindong</creatorcontrib><creatorcontrib>Zhu, Daiyin</creatorcontrib><title>Deep-Learning for Radar: A Survey</title><title>IEEE access</title><addtitle>Access</addtitle><description>A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.</description><subject>adversarial examples</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Artificial neural networks</subject><subject>Automatic target recognition</subject><subject>automatic target recognition (ATR)</subject><subject>Clutter</subject><subject>Deep learning</subject><subject>Interception</subject><subject>Interference</subject><subject>Jamming</subject><subject>jamming recognition</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Radar</subject><subject>Radar applications</subject><subject>Radar arrays</subject><subject>Radar imaging</subject><subject>Radar signal processing</subject><subject>Radar signatures</subject><subject>radar waveform recognition</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Waveforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0Fvax43prJ1ybeylq1UBCsnkOSnS1bardmW8F_b-qW4lxmeDPvzeMRMgY6AaDmflqWs-VywiiDCQcwUsEFGTBQJueSq8t_8zUZdd2aptIJksWA3D4i7vIFurhttqusbmP25ioXH7JptjzEb_y5IVe123Q4OvUh-XiavZcv-eL1eV5OF3kQVO_zwL0QoSi0qrxBxl3wXgpeaRNqIYPnDLlnvg7Cy-QSDA1GOigCGqYD03xI5r1u1bq13cXm08Uf27rG_gFtXFkX903YoFVVwdHXqEIRBChwNL10Sccg1UawpHXXa-1i-3XAbm_X7SFuk33LpFbSMKDHK95fhdh2XcT6_BWoPUZr-2jtMVp7ijaxxj2rQcQzI620AcV_AYwVccg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Geng, Zhe</creator><creator>Yan, He</creator><creator>Zhang, Jindong</creator><creator>Zhu, Daiyin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5855-8635</orcidid><orcidid>https://orcid.org/0000-0002-9882-351X</orcidid><orcidid>https://orcid.org/0000-0002-5440-3556</orcidid><orcidid>https://orcid.org/0000-0001-6464-6431</orcidid></search><sort><creationdate>2021</creationdate><title>Deep-Learning for Radar: A Survey</title><author>Geng, Zhe ; Yan, He ; Zhang, Jindong ; Zhu, Daiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adversarial examples</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Artificial neural networks</topic><topic>Automatic target recognition</topic><topic>automatic target recognition (ATR)</topic><topic>Clutter</topic><topic>Deep learning</topic><topic>Interception</topic><topic>Interference</topic><topic>Jamming</topic><topic>jamming recognition</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Radar</topic><topic>Radar applications</topic><topic>Radar arrays</topic><topic>Radar imaging</topic><topic>Radar signal processing</topic><topic>Radar signatures</topic><topic>radar waveform recognition</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Zhe</creatorcontrib><creatorcontrib>Yan, He</creatorcontrib><creatorcontrib>Zhang, Jindong</creatorcontrib><creatorcontrib>Zhu, Daiyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Zhe</au><au>Yan, He</au><au>Zhang, Jindong</au><au>Zhu, Daiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning for Radar: A Survey</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>141800</spage><epage>141818</epage><pages>141800-141818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A comprehensive and well-structured review on the application of deep learning (DL) based algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar signal processing is given. The following DL application areas are covered: i) radar waveform and antenna array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of existing works on similar topics, both the positive and the negative sides of stories about DL are checked in this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), limited training samples and adversarial examples, are thoroughly examined. By investigating the relationship between the DL-based algorithms proposed in various papers and linking them together to form a full picture, this work serves as a valuable source for researchers who are seeking potential research opportunities in this promising research field.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3119561</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5855-8635</orcidid><orcidid>https://orcid.org/0000-0002-9882-351X</orcidid><orcidid>https://orcid.org/0000-0002-5440-3556</orcidid><orcidid>https://orcid.org/0000-0001-6464-6431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.141800-141818 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6d73ebfe6c7c4161a0b9ea9289e08942 |
source | IEEE Xplore Open Access Journals |
subjects | adversarial examples Algorithms Antenna arrays Antenna design Artificial neural networks Automatic target recognition automatic target recognition (ATR) Clutter Deep learning Interception Interference Jamming jamming recognition Machine learning Neural networks Object recognition Radar Radar applications Radar arrays Radar imaging Radar signal processing Radar signatures radar waveform recognition Signal processing Signal processing algorithms Synthetic aperture radar synthetic aperture radar (SAR) Waveforms |
title | Deep-Learning for Radar: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20for%20Radar:%20A%20Survey&rft.jtitle=IEEE%20access&rft.au=Geng,%20Zhe&rft.date=2021&rft.volume=9&rft.spage=141800&rft.epage=141818&rft.pages=141800-141818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3119561&rft_dat=%3Cproquest_doaj_%3E2586592102%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c3b44c7786db9e23acbb543d89cf45cb32e3b2bfc4b5311190c95a17ce928c283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586592102&rft_id=info:pmid/&rft_ieee_id=9568916&rfr_iscdi=true |