Loading…

Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon

To accurately apportion the sources of aerosols, a combined method of positive matrix factorization (PMF) and the Bayesian mixing model was applied in this study. The PMF model was conducted to identify the sources of PM2.5 in Guangzhou. The secondary inorganic aerosol source was one of the seven ma...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2020-05, Vol.11 (5), p.512
Main Authors: Li, Tingting, Li, Jun, Jiang, Hongxing, Chen, Duohong, Zong, Zheng, Tian, Chongguo, Zhang, Gan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To accurately apportion the sources of aerosols, a combined method of positive matrix factorization (PMF) and the Bayesian mixing model was applied in this study. The PMF model was conducted to identify the sources of PM2.5 in Guangzhou. The secondary inorganic aerosol source was one of the seven main sources in Guangzhou. Based on stable isotopes of oxygen and nitrogen (δ15N-NO3− and δ18O-NO3−), the Bayesian mixing model was performed to apportion the source of NO3− to coal combustion, traffic emission and biogenic source. Then the secondary aerosol source was subdivided into three sources according to the discrepancy in source apportionment of NO3− between PMF and Bayesian mixing model results. After secondary aerosol assignment, the six main sources of PM2.5 were traffic emission (30.6%), biomass burning (23.1%), coal combustion (17.7%), ship emission (14.0%), biomass boiler (9.9%) and industrial emission (4.7%). To assess the source apportionment results, fossil/non-fossil source contributions to organic carbon (OC) and element carbon (EC) inferred from 14C measurements were compared with the corresponding results in the PMF model. The results showed that source distributions of EC matched well between those two methods, indicating that the PMF model captured the primary sources well. Probably because of the lack of organic molecular markers to identify the biogenic source of OC, the non-fossil source contribution to OC in PMF results was obviously lower than 14C results. Thus, an indicative organic molecular tracer should be used to identify the biogenic source when accurately apportioning the sources of aerosols, especially in the region with high plant coverage or intense biomass burning.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos11050512