Loading…

Comparative and Equilibrium Studies on Anionic and Cationic Dyes Removal by Nano-Alumina-Doped Catechol Formaldehyde Composite

Nano-alumina-doped catechol formaldehyde polymeric composite was prepared, characterized, and applied as an adsorbent for the removal of an anionic dye Congo red (CR) and a cationic dye SafraninO (SF), by adsorption process especially from aqueous solutions. Characterizations such as particle size d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemistry 2020-09, Vol.2020 (2020), p.1-15
Main Authors: Naushad, Mu, Ahamad, Tansir, Kiruthika, J., Brinda, N., Megavarshini, P., Sivarajasekar, N., Selvakumar, P., Karthik, V., Balasubramani, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nano-alumina-doped catechol formaldehyde polymeric composite was prepared, characterized, and applied as an adsorbent for the removal of an anionic dye Congo red (CR) and a cationic dye SafraninO (SF), by adsorption process especially from aqueous solutions. Characterizations such as particle size distribution, zeta potential, BET, FTIR, and FESEM-EDAX were carried out for the adsorbent prepared. All experiments were conducted at the batch condition to study the effects of initial dye concentration (CR: 30–90 mg/L and SF: 10–50 mg/L), pH (2–11), temperature (25–55°C), and adsorbent dosage (0.05–0.3 g) on dye removal. The isotherm models (Langmuir, Freundlich, and Temkin) were analyzed for this adsorption work. The kinetic data obtained were analyzed by the pseudo-first-order, pseudo-second-order, Bangham, and Chien–Clayton equations. Dyes adsorption data were well fitted with the Freundlich isotherm equilibrium model and the pseudo-second-order kinetic model. Study results suggested that the nano-alumina-polymeric composite could be an effective adsorbent for anionic dye rather than cationic dye.
ISSN:2090-9063
2090-9071
DOI:10.1155/2020/7617989