Loading…

Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis

Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We fin...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-08, Vol.13 (1), p.4504-4504, Article 4504
Main Authors: Morcos, Mina N. F., Li, Congxin, Munz, Clara M., Greco, Alessandro, Dressel, Nicole, Reinhardt, Susanne, Sameith, Katrin, Dahl, Andreas, Becker, Nils B., Roers, Axel, Höfer, Thomas, Gerbaulet, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913
cites cdi_FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913
container_end_page 4504
container_issue 1
container_start_page 4504
container_title Nature communications
container_volume 13
creator Morcos, Mina N. F.
Li, Congxin
Munz, Clara M.
Greco, Alessandro
Dressel, Nicole
Reinhardt, Susanne
Sameith, Katrin
Dahl, Andreas
Becker, Nils B.
Roers, Axel
Höfer, Thomas
Gerbaulet, Alexander
description Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48 hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48 −/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis. Hematopoietic stem cells produce diverse cell lineages. Here, the authors apply single-cell RNA-seq, computational integration of non-perturbative approaches for fate-mapping, and mitotic tracking to chart lineage decisions in native hematopoiesis and identify megakaryocyte progenitors that directly link HSCs to megakaryocytes.
doi_str_mv 10.1038/s41467-022-31914-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6dc5319467ea4f6cb5ff6f5b2c8e6b18</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6dc5319467ea4f6cb5ff6f5b2c8e6b18</doaj_id><sourcerecordid>2698632022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3CKxIVLaMZ_4wsSqihUqsQFxNGaJOPdrDZxsL1btU_Ds_BkeDcVpRzwxZb9-z7NfJ6ieA31O6h5cxEFCKWrmrGKgwFR3T8rTlktoALN-PO_zifFeYybOi9uoBHiZXHCpWFMAJwW368wUTniPA_TqvSuXNOIyc9-oDR0ZUw0lh1tt_HXz0B7wm0s060vZ0zrW7yLB8WEadhTmdbBj-1RGYf4qnjhMkznD_tZ8e3q49fLz9XNl0_Xlx9uqk6CTpVRDqmRdd4NSMl42yBqRGew1VpKpaF10Jiei7rnDEkZo3NnuuWkjQF-Vlwvvr3HjZ3DMGK4sx4He7zwYWUx5E62ZFXfyRxVTo1QONW10jnlZMu6hlQLTfZ6v3jNu3akvqMpBdw-MX36Mg1ru_J7a7gwcCzm7YNB8D92FJMdh3hIDyfyu2iZMo3iLP9ZRt_8g278Lkw5qgOlJZcKZKbYQnXBxxjI_SkGansYA7uMgc2W9jgG9j6L-CKKGZ5WFB6t_6P6Dc7ptd4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697535615</pqid></control><display><type>article</type><title>Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis</title><source>PubMed Central Free</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Morcos, Mina N. F. ; Li, Congxin ; Munz, Clara M. ; Greco, Alessandro ; Dressel, Nicole ; Reinhardt, Susanne ; Sameith, Katrin ; Dahl, Andreas ; Becker, Nils B. ; Roers, Axel ; Höfer, Thomas ; Gerbaulet, Alexander</creator><creatorcontrib>Morcos, Mina N. F. ; Li, Congxin ; Munz, Clara M. ; Greco, Alessandro ; Dressel, Nicole ; Reinhardt, Susanne ; Sameith, Katrin ; Dahl, Andreas ; Becker, Nils B. ; Roers, Axel ; Höfer, Thomas ; Gerbaulet, Alexander</creatorcontrib><description>Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48 hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48 −/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis. Hematopoietic stem cells produce diverse cell lineages. Here, the authors apply single-cell RNA-seq, computational integration of non-perturbative approaches for fate-mapping, and mitotic tracking to chart lineage decisions in native hematopoiesis and identify megakaryocyte progenitors that directly link HSCs to megakaryocytes.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-31914-z</identifier><identifier>PMID: 35922411</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/31 ; 38/39 ; 38/91 ; 631/114/2397 ; 631/136/232/2051/1339 ; 631/532/1542 ; 631/532/2118/1542 ; 64/60 ; Cell fate ; Computer applications ; Fate maps ; Gene sequencing ; Hematopoiesis ; Hematopoietic stem cells ; Humanities and Social Sciences ; Lymphocytes ; Mapping ; Megakaryocytes ; multidisciplinary ; Myelopoiesis ; Physiology ; Progenitor cells ; Science ; Science (multidisciplinary) ; Stem cells ; Thrombopoiesis ; Thrombopoietin ; Tracking</subject><ispartof>Nature communications, 2022-08, Vol.13 (1), p.4504-4504, Article 4504</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913</citedby><cites>FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913</cites><orcidid>0000-0002-6453-1666 ; 0000-0003-3560-8780 ; 0000-0002-2668-8371 ; 0000-0003-4306-930X ; 0000-0001-5812-9526 ; 0000-0003-1806-6158 ; 0000-0003-4680-4920 ; 0000-0001-9202-105X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2697535615/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2697535615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Morcos, Mina N. F.</creatorcontrib><creatorcontrib>Li, Congxin</creatorcontrib><creatorcontrib>Munz, Clara M.</creatorcontrib><creatorcontrib>Greco, Alessandro</creatorcontrib><creatorcontrib>Dressel, Nicole</creatorcontrib><creatorcontrib>Reinhardt, Susanne</creatorcontrib><creatorcontrib>Sameith, Katrin</creatorcontrib><creatorcontrib>Dahl, Andreas</creatorcontrib><creatorcontrib>Becker, Nils B.</creatorcontrib><creatorcontrib>Roers, Axel</creatorcontrib><creatorcontrib>Höfer, Thomas</creatorcontrib><creatorcontrib>Gerbaulet, Alexander</creatorcontrib><title>Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48 hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48 −/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis. Hematopoietic stem cells produce diverse cell lineages. Here, the authors apply single-cell RNA-seq, computational integration of non-perturbative approaches for fate-mapping, and mitotic tracking to chart lineage decisions in native hematopoiesis and identify megakaryocyte progenitors that directly link HSCs to megakaryocytes.</description><subject>13/100</subject><subject>13/31</subject><subject>38/39</subject><subject>38/91</subject><subject>631/114/2397</subject><subject>631/136/232/2051/1339</subject><subject>631/532/1542</subject><subject>631/532/2118/1542</subject><subject>64/60</subject><subject>Cell fate</subject><subject>Computer applications</subject><subject>Fate maps</subject><subject>Gene sequencing</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem cells</subject><subject>Humanities and Social Sciences</subject><subject>Lymphocytes</subject><subject>Mapping</subject><subject>Megakaryocytes</subject><subject>multidisciplinary</subject><subject>Myelopoiesis</subject><subject>Physiology</subject><subject>Progenitor cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Thrombopoiesis</subject><subject>Thrombopoietin</subject><subject>Tracking</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3CKxIVLaMZ_4wsSqihUqsQFxNGaJOPdrDZxsL1btU_Ds_BkeDcVpRzwxZb9-z7NfJ6ieA31O6h5cxEFCKWrmrGKgwFR3T8rTlktoALN-PO_zifFeYybOi9uoBHiZXHCpWFMAJwW368wUTniPA_TqvSuXNOIyc9-oDR0ZUw0lh1tt_HXz0B7wm0s060vZ0zrW7yLB8WEadhTmdbBj-1RGYf4qnjhMkznD_tZ8e3q49fLz9XNl0_Xlx9uqk6CTpVRDqmRdd4NSMl42yBqRGew1VpKpaF10Jiei7rnDEkZo3NnuuWkjQF-Vlwvvr3HjZ3DMGK4sx4He7zwYWUx5E62ZFXfyRxVTo1QONW10jnlZMu6hlQLTfZ6v3jNu3akvqMpBdw-MX36Mg1ru_J7a7gwcCzm7YNB8D92FJMdh3hIDyfyu2iZMo3iLP9ZRt_8g278Lkw5qgOlJZcKZKbYQnXBxxjI_SkGansYA7uMgc2W9jgG9j6L-CKKGZ5WFB6t_6P6Dc7ptd4</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Morcos, Mina N. F.</creator><creator>Li, Congxin</creator><creator>Munz, Clara M.</creator><creator>Greco, Alessandro</creator><creator>Dressel, Nicole</creator><creator>Reinhardt, Susanne</creator><creator>Sameith, Katrin</creator><creator>Dahl, Andreas</creator><creator>Becker, Nils B.</creator><creator>Roers, Axel</creator><creator>Höfer, Thomas</creator><creator>Gerbaulet, Alexander</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6453-1666</orcidid><orcidid>https://orcid.org/0000-0003-3560-8780</orcidid><orcidid>https://orcid.org/0000-0002-2668-8371</orcidid><orcidid>https://orcid.org/0000-0003-4306-930X</orcidid><orcidid>https://orcid.org/0000-0001-5812-9526</orcidid><orcidid>https://orcid.org/0000-0003-1806-6158</orcidid><orcidid>https://orcid.org/0000-0003-4680-4920</orcidid><orcidid>https://orcid.org/0000-0001-9202-105X</orcidid></search><sort><creationdate>20220803</creationdate><title>Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis</title><author>Morcos, Mina N. F. ; Li, Congxin ; Munz, Clara M. ; Greco, Alessandro ; Dressel, Nicole ; Reinhardt, Susanne ; Sameith, Katrin ; Dahl, Andreas ; Becker, Nils B. ; Roers, Axel ; Höfer, Thomas ; Gerbaulet, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/100</topic><topic>13/31</topic><topic>38/39</topic><topic>38/91</topic><topic>631/114/2397</topic><topic>631/136/232/2051/1339</topic><topic>631/532/1542</topic><topic>631/532/2118/1542</topic><topic>64/60</topic><topic>Cell fate</topic><topic>Computer applications</topic><topic>Fate maps</topic><topic>Gene sequencing</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem cells</topic><topic>Humanities and Social Sciences</topic><topic>Lymphocytes</topic><topic>Mapping</topic><topic>Megakaryocytes</topic><topic>multidisciplinary</topic><topic>Myelopoiesis</topic><topic>Physiology</topic><topic>Progenitor cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Thrombopoiesis</topic><topic>Thrombopoietin</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morcos, Mina N. F.</creatorcontrib><creatorcontrib>Li, Congxin</creatorcontrib><creatorcontrib>Munz, Clara M.</creatorcontrib><creatorcontrib>Greco, Alessandro</creatorcontrib><creatorcontrib>Dressel, Nicole</creatorcontrib><creatorcontrib>Reinhardt, Susanne</creatorcontrib><creatorcontrib>Sameith, Katrin</creatorcontrib><creatorcontrib>Dahl, Andreas</creatorcontrib><creatorcontrib>Becker, Nils B.</creatorcontrib><creatorcontrib>Roers, Axel</creatorcontrib><creatorcontrib>Höfer, Thomas</creatorcontrib><creatorcontrib>Gerbaulet, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morcos, Mina N. F.</au><au>Li, Congxin</au><au>Munz, Clara M.</au><au>Greco, Alessandro</au><au>Dressel, Nicole</au><au>Reinhardt, Susanne</au><au>Sameith, Katrin</au><au>Dahl, Andreas</au><au>Becker, Nils B.</au><au>Roers, Axel</au><au>Höfer, Thomas</au><au>Gerbaulet, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-08-03</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>4504</spage><epage>4504</epage><pages>4504-4504</pages><artnum>4504</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48 hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48 −/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis. Hematopoietic stem cells produce diverse cell lineages. Here, the authors apply single-cell RNA-seq, computational integration of non-perturbative approaches for fate-mapping, and mitotic tracking to chart lineage decisions in native hematopoiesis and identify megakaryocyte progenitors that directly link HSCs to megakaryocytes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35922411</pmid><doi>10.1038/s41467-022-31914-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6453-1666</orcidid><orcidid>https://orcid.org/0000-0003-3560-8780</orcidid><orcidid>https://orcid.org/0000-0002-2668-8371</orcidid><orcidid>https://orcid.org/0000-0003-4306-930X</orcidid><orcidid>https://orcid.org/0000-0001-5812-9526</orcidid><orcidid>https://orcid.org/0000-0003-1806-6158</orcidid><orcidid>https://orcid.org/0000-0003-4680-4920</orcidid><orcidid>https://orcid.org/0000-0001-9202-105X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-08, Vol.13 (1), p.4504-4504, Article 4504
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6dc5319467ea4f6cb5ff6f5b2c8e6b18
source PubMed Central Free; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 13/100
13/31
38/39
38/91
631/114/2397
631/136/232/2051/1339
631/532/1542
631/532/2118/1542
64/60
Cell fate
Computer applications
Fate maps
Gene sequencing
Hematopoiesis
Hematopoietic stem cells
Humanities and Social Sciences
Lymphocytes
Mapping
Megakaryocytes
multidisciplinary
Myelopoiesis
Physiology
Progenitor cells
Science
Science (multidisciplinary)
Stem cells
Thrombopoiesis
Thrombopoietin
Tracking
title Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fate%20mapping%20of%20hematopoietic%20stem%20cells%C2%A0reveals%20two%20pathways%20of%20native%20thrombopoiesis&rft.jtitle=Nature%20communications&rft.au=Morcos,%20Mina%20N.%20F.&rft.date=2022-08-03&rft.volume=13&rft.issue=1&rft.spage=4504&rft.epage=4504&rft.pages=4504-4504&rft.artnum=4504&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-31914-z&rft_dat=%3Cproquest_doaj_%3E2698632022%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-96fae85096f915523b8aa7aaf9ab7755671bf189d340d32ae69972047b3e79913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2697535615&rft_id=info:pmid/35922411&rfr_iscdi=true