Loading…
Complex Involvement of Interleukin-26 in Bacterial Lung Infection
Pneumonia is a global cause of mortality, and this provides a strong incentive to improve the mechanistic understanding of innate immune responses in the lungs. Here, we characterized the involvement of the cytokine interleukin (IL)-26 in bacterial lung infection. We observed markedly increased conc...
Saved in:
Published in: | Frontiers in immunology 2021, Vol.12, p.761317-761317 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pneumonia is a global cause of mortality, and this provides a strong incentive to improve the mechanistic understanding of innate immune responses in the lungs. Here, we characterized the involvement of the cytokine interleukin (IL)-26 in bacterial lung infection. We observed markedly increased concentrations of IL-26 in lower airway samples from patients with bacterial pneumonia and these correlated with blood neutrophil concentrations. Moreover, pathogen-associated molecular patterns (PAMPs) from both Gram-negative and -positive bacteria increased extracellular IL-26 concentrations in conditioned media from human models of alveolar epithelial cells, macrophages, and neutrophils
. Stimulation with IL-26 inhibited the inherent release of neutrophil elastase and myeloperoxidase in unexposed neutrophils. This stimulation also inhibited the expression of activity makers in neutrophils exposed to
In addition, priming of human lung tissue
with exogenous IL-26 potentiated the endotoxin-induced increase in mRNA for other cytokines involved in the innate immune response, including the master Th17-regulator IL-23 and the archetype inhibitory cytokine IL-10. Finally, neutralization of endogenous IL-26 clearly increased the growth of
in the macrophage culture. These findings suggest that IL-26 is involved in bacterial lung infection in a complex manner, by modulating critical aspects of innate immune responses locally and systemically in a seemingly purposeful manner and by contributing to the killing of bacteria in a way that resembles an antimicrobial peptide. Thus, IL-26 displays both diagnostic and therapeutic potential in pneumonia and deserves to be further evaluated in these respects. |
---|---|
ISSN: | 1664-3224 1664-3224 |
DOI: | 10.3389/fimmu.2021.761317 |