Loading…
Electrostatic excitation for the force amplification of microcantilever sensors
This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially th...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2011-11, Vol.11 (11), p.10129-10142 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53 |
container_end_page | 10142 |
container_issue | 11 |
container_start_page | 10129 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 11 |
creator | Shokuhfar, Ali Heydari, Payam Ebrahimi-Nejad, Salman |
description | This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed. |
doi_str_mv | 10.3390/s111110129 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6dd31a699e61473b82920a422708759e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6dd31a699e61473b82920a422708759e</doaj_id><sourcerecordid>922501351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</originalsourceid><addsrcrecordid>eNp9ksFuFDEMhiMEoqVw4QHQSBxASAtJnGQml0qoKlCpUi9wjrwZp81qZrIksxW8fTPdUloO5GLL_vTbjs3Ya8E_Alj-qYjlcSHtE3YolFSrTkr-9IF_wF6UsuFcAkD3nB1ICcoYgEN2cTqQn3MqM87RN_TLx8VLUxNSbuYrWqynBsftEEP0-1wKzRh9Th6nOQ50TbkpNJWUy0v2LOBQ6NWdPWI_vpx-P_m2Or_4enby-XzlNVfzSiP3HQavdLBget1boL6GhBGIMthemU51AsJar5VvuehsIK0Etia0yms4Ymd73T7hxm1zHDH_dgmjuw2kfOkw14kGcqbvQaCxloxQLaw7aSVHJWXLu1ZbqlrHe63tbj1S72maMw6PRB9npnjlLtO1A9kq2S7NvLsTyOnnjsrsxlg8DQNOlHbFWSk1F6BFJd__l6xbtKYuzNqKvv0H3aRdnuqnOqGhVtUKeKU-7Km6jVIyhfu2BXfLdbi_11HhNw8HvUf_nAPcAKZ4s8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537535430</pqid></control><display><type>article</type><title>Electrostatic excitation for the force amplification of microcantilever sensors</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Shokuhfar, Ali ; Heydari, Payam ; Ebrahimi-Nejad, Salman</creator><creatorcontrib>Shokuhfar, Ali ; Heydari, Payam ; Ebrahimi-Nejad, Salman</creatorcontrib><description>This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s111110129</identifier><identifier>PMID: 22346633</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Amplification ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Computer Simulation ; Displacement ; Electric noise ; Electric potential ; Electrodes ; Electrostatics ; Excitation ; force amplification ; Load ; Micro-Electrical-Mechanical Systems - instrumentation ; Micro-Electrical-Mechanical Systems - methods ; microcantilever ; Microelectromechanical systems ; Models, Theoretical ; Nonlinearity ; pull-in voltage ; Sensors ; Silicon ; Static Electricity ; Stress concentration ; Voltage</subject><ispartof>Sensors (Basel, Switzerland), 2011-11, Vol.11 (11), p.10129-10142</ispartof><rights>Copyright MDPI AG 2011</rights><rights>2011 by the authors; licensee MDPI, Basel, Switzerland. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</citedby><cites>FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537535430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537535430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22346633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shokuhfar, Ali</creatorcontrib><creatorcontrib>Heydari, Payam</creatorcontrib><creatorcontrib>Ebrahimi-Nejad, Salman</creatorcontrib><title>Electrostatic excitation for the force amplification of microcantilever sensors</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.</description><subject>Algorithms</subject><subject>Amplification</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Computer Simulation</subject><subject>Displacement</subject><subject>Electric noise</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrostatics</subject><subject>Excitation</subject><subject>force amplification</subject><subject>Load</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Micro-Electrical-Mechanical Systems - methods</subject><subject>microcantilever</subject><subject>Microelectromechanical systems</subject><subject>Models, Theoretical</subject><subject>Nonlinearity</subject><subject>pull-in voltage</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Static Electricity</subject><subject>Stress concentration</subject><subject>Voltage</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFuFDEMhiMEoqVw4QHQSBxASAtJnGQml0qoKlCpUi9wjrwZp81qZrIksxW8fTPdUloO5GLL_vTbjs3Ya8E_Alj-qYjlcSHtE3YolFSrTkr-9IF_wF6UsuFcAkD3nB1ICcoYgEN2cTqQn3MqM87RN_TLx8VLUxNSbuYrWqynBsftEEP0-1wKzRh9Th6nOQ50TbkpNJWUy0v2LOBQ6NWdPWI_vpx-P_m2Or_4enby-XzlNVfzSiP3HQavdLBget1boL6GhBGIMthemU51AsJar5VvuehsIK0Etia0yms4Ymd73T7hxm1zHDH_dgmjuw2kfOkw14kGcqbvQaCxloxQLaw7aSVHJWXLu1ZbqlrHe63tbj1S72maMw6PRB9npnjlLtO1A9kq2S7NvLsTyOnnjsrsxlg8DQNOlHbFWSk1F6BFJd__l6xbtKYuzNqKvv0H3aRdnuqnOqGhVtUKeKU-7Km6jVIyhfu2BXfLdbi_11HhNw8HvUf_nAPcAKZ4s8w</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Shokuhfar, Ali</creator><creator>Heydari, Payam</creator><creator>Ebrahimi-Nejad, Salman</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111101</creationdate><title>Electrostatic excitation for the force amplification of microcantilever sensors</title><author>Shokuhfar, Ali ; Heydari, Payam ; Ebrahimi-Nejad, Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Amplification</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Computer Simulation</topic><topic>Displacement</topic><topic>Electric noise</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrostatics</topic><topic>Excitation</topic><topic>force amplification</topic><topic>Load</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Micro-Electrical-Mechanical Systems - methods</topic><topic>microcantilever</topic><topic>Microelectromechanical systems</topic><topic>Models, Theoretical</topic><topic>Nonlinearity</topic><topic>pull-in voltage</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Static Electricity</topic><topic>Stress concentration</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokuhfar, Ali</creatorcontrib><creatorcontrib>Heydari, Payam</creatorcontrib><creatorcontrib>Ebrahimi-Nejad, Salman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokuhfar, Ali</au><au>Heydari, Payam</au><au>Ebrahimi-Nejad, Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic excitation for the force amplification of microcantilever sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>11</volume><issue>11</issue><spage>10129</spage><epage>10142</epage><pages>10129-10142</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22346633</pmid><doi>10.3390/s111110129</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2011-11, Vol.11 (11), p.10129-10142 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6dd31a699e61473b82920a422708759e |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Algorithms Amplification Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Computer Simulation Displacement Electric noise Electric potential Electrodes Electrostatics Excitation force amplification Load Micro-Electrical-Mechanical Systems - instrumentation Micro-Electrical-Mechanical Systems - methods microcantilever Microelectromechanical systems Models, Theoretical Nonlinearity pull-in voltage Sensors Silicon Static Electricity Stress concentration Voltage |
title | Electrostatic excitation for the force amplification of microcantilever sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20excitation%20for%20the%20force%20amplification%20of%20microcantilever%20sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Shokuhfar,%20Ali&rft.date=2011-11-01&rft.volume=11&rft.issue=11&rft.spage=10129&rft.epage=10142&rft.pages=10129-10142&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s111110129&rft_dat=%3Cproquest_doaj_%3E922501351%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537535430&rft_id=info:pmid/22346633&rfr_iscdi=true |