Loading…

Electrostatic excitation for the force amplification of microcantilever sensors

This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially th...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2011-11, Vol.11 (11), p.10129-10142
Main Authors: Shokuhfar, Ali, Heydari, Payam, Ebrahimi-Nejad, Salman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53
cites cdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53
container_end_page 10142
container_issue 11
container_start_page 10129
container_title Sensors (Basel, Switzerland)
container_volume 11
creator Shokuhfar, Ali
Heydari, Payam
Ebrahimi-Nejad, Salman
description This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.
doi_str_mv 10.3390/s111110129
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6dd31a699e61473b82920a422708759e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6dd31a699e61473b82920a422708759e</doaj_id><sourcerecordid>922501351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</originalsourceid><addsrcrecordid>eNp9ksFuFDEMhiMEoqVw4QHQSBxASAtJnGQml0qoKlCpUi9wjrwZp81qZrIksxW8fTPdUloO5GLL_vTbjs3Ya8E_Alj-qYjlcSHtE3YolFSrTkr-9IF_wF6UsuFcAkD3nB1ICcoYgEN2cTqQn3MqM87RN_TLx8VLUxNSbuYrWqynBsftEEP0-1wKzRh9Th6nOQ50TbkpNJWUy0v2LOBQ6NWdPWI_vpx-P_m2Or_4enby-XzlNVfzSiP3HQavdLBget1boL6GhBGIMthemU51AsJar5VvuehsIK0Etia0yms4Ymd73T7hxm1zHDH_dgmjuw2kfOkw14kGcqbvQaCxloxQLaw7aSVHJWXLu1ZbqlrHe63tbj1S72maMw6PRB9npnjlLtO1A9kq2S7NvLsTyOnnjsrsxlg8DQNOlHbFWSk1F6BFJd__l6xbtKYuzNqKvv0H3aRdnuqnOqGhVtUKeKU-7Km6jVIyhfu2BXfLdbi_11HhNw8HvUf_nAPcAKZ4s8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537535430</pqid></control><display><type>article</type><title>Electrostatic excitation for the force amplification of microcantilever sensors</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Shokuhfar, Ali ; Heydari, Payam ; Ebrahimi-Nejad, Salman</creator><creatorcontrib>Shokuhfar, Ali ; Heydari, Payam ; Ebrahimi-Nejad, Salman</creatorcontrib><description>This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s111110129</identifier><identifier>PMID: 22346633</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Amplification ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Computer Simulation ; Displacement ; Electric noise ; Electric potential ; Electrodes ; Electrostatics ; Excitation ; force amplification ; Load ; Micro-Electrical-Mechanical Systems - instrumentation ; Micro-Electrical-Mechanical Systems - methods ; microcantilever ; Microelectromechanical systems ; Models, Theoretical ; Nonlinearity ; pull-in voltage ; Sensors ; Silicon ; Static Electricity ; Stress concentration ; Voltage</subject><ispartof>Sensors (Basel, Switzerland), 2011-11, Vol.11 (11), p.10129-10142</ispartof><rights>Copyright MDPI AG 2011</rights><rights>2011 by the authors; licensee MDPI, Basel, Switzerland. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</citedby><cites>FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537535430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537535430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22346633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shokuhfar, Ali</creatorcontrib><creatorcontrib>Heydari, Payam</creatorcontrib><creatorcontrib>Ebrahimi-Nejad, Salman</creatorcontrib><title>Electrostatic excitation for the force amplification of microcantilever sensors</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.</description><subject>Algorithms</subject><subject>Amplification</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Computer Simulation</subject><subject>Displacement</subject><subject>Electric noise</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrostatics</subject><subject>Excitation</subject><subject>force amplification</subject><subject>Load</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Micro-Electrical-Mechanical Systems - methods</subject><subject>microcantilever</subject><subject>Microelectromechanical systems</subject><subject>Models, Theoretical</subject><subject>Nonlinearity</subject><subject>pull-in voltage</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Static Electricity</subject><subject>Stress concentration</subject><subject>Voltage</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFuFDEMhiMEoqVw4QHQSBxASAtJnGQml0qoKlCpUi9wjrwZp81qZrIksxW8fTPdUloO5GLL_vTbjs3Ya8E_Alj-qYjlcSHtE3YolFSrTkr-9IF_wF6UsuFcAkD3nB1ICcoYgEN2cTqQn3MqM87RN_TLx8VLUxNSbuYrWqynBsftEEP0-1wKzRh9Th6nOQ50TbkpNJWUy0v2LOBQ6NWdPWI_vpx-P_m2Or_4enby-XzlNVfzSiP3HQavdLBget1boL6GhBGIMthemU51AsJar5VvuehsIK0Etia0yms4Ymd73T7hxm1zHDH_dgmjuw2kfOkw14kGcqbvQaCxloxQLaw7aSVHJWXLu1ZbqlrHe63tbj1S72maMw6PRB9npnjlLtO1A9kq2S7NvLsTyOnnjsrsxlg8DQNOlHbFWSk1F6BFJd__l6xbtKYuzNqKvv0H3aRdnuqnOqGhVtUKeKU-7Km6jVIyhfu2BXfLdbi_11HhNw8HvUf_nAPcAKZ4s8w</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Shokuhfar, Ali</creator><creator>Heydari, Payam</creator><creator>Ebrahimi-Nejad, Salman</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111101</creationdate><title>Electrostatic excitation for the force amplification of microcantilever sensors</title><author>Shokuhfar, Ali ; Heydari, Payam ; Ebrahimi-Nejad, Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Amplification</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Computer Simulation</topic><topic>Displacement</topic><topic>Electric noise</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrostatics</topic><topic>Excitation</topic><topic>force amplification</topic><topic>Load</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Micro-Electrical-Mechanical Systems - methods</topic><topic>microcantilever</topic><topic>Microelectromechanical systems</topic><topic>Models, Theoretical</topic><topic>Nonlinearity</topic><topic>pull-in voltage</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Static Electricity</topic><topic>Stress concentration</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokuhfar, Ali</creatorcontrib><creatorcontrib>Heydari, Payam</creatorcontrib><creatorcontrib>Ebrahimi-Nejad, Salman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokuhfar, Ali</au><au>Heydari, Payam</au><au>Ebrahimi-Nejad, Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic excitation for the force amplification of microcantilever sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>11</volume><issue>11</issue><spage>10129</spage><epage>10142</epage><pages>10129-10142</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22346633</pmid><doi>10.3390/s111110129</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2011-11, Vol.11 (11), p.10129-10142
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6dd31a699e61473b82920a422708759e
source PubMed (Medline); Publicly Available Content Database
subjects Algorithms
Amplification
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Computer Simulation
Displacement
Electric noise
Electric potential
Electrodes
Electrostatics
Excitation
force amplification
Load
Micro-Electrical-Mechanical Systems - instrumentation
Micro-Electrical-Mechanical Systems - methods
microcantilever
Microelectromechanical systems
Models, Theoretical
Nonlinearity
pull-in voltage
Sensors
Silicon
Static Electricity
Stress concentration
Voltage
title Electrostatic excitation for the force amplification of microcantilever sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20excitation%20for%20the%20force%20amplification%20of%20microcantilever%20sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Shokuhfar,%20Ali&rft.date=2011-11-01&rft.volume=11&rft.issue=11&rft.spage=10129&rft.epage=10142&rft.pages=10129-10142&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s111110129&rft_dat=%3Cproquest_doaj_%3E922501351%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-5a0c8afc45f936d5d93ed0c8161aa2f9d4684813fb5b4c70189fe541a76f74c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537535430&rft_id=info:pmid/22346633&rfr_iscdi=true