Loading…
Semantic Similarity of Common Verbal Expressions in Older Adults through a Pre-Trained Model
Health problems in older adults lead to situations where communication with peers, family and caregivers becomes challenging for seniors; therefore, it is necessary to use alternative methods to facilitate communication. In this context, Augmentative and Alternative Communication (AAC) methods are w...
Saved in:
Published in: | Big data and cognitive computing 2024-01, Vol.8 (1), p.3 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Health problems in older adults lead to situations where communication with peers, family and caregivers becomes challenging for seniors; therefore, it is necessary to use alternative methods to facilitate communication. In this context, Augmentative and Alternative Communication (AAC) methods are widely used to support this population segment. Moreover, with Artificial Intelligence (AI), and specifically, machine learning algorithms, AAC can be improved. Although there have been several studies in this field, it is interesting to analyze common phrases used by seniors, depending on their context (i.e., slang and everyday expressions typical of their age). This paper proposes a semantic analysis of the common phrases of older adults and their corresponding meanings through Natural Language Processing (NLP) techniques and a pre-trained language model using semantic textual similarity to represent the older adults’ phrases with their corresponding graphic images (pictograms). The results show good scores achieved in the semantic similarity between the phrases of the older adults and the definitions, so the relationship between the phrase and the pictogram has a high degree of probability. |
---|---|
ISSN: | 2504-2289 2504-2289 |
DOI: | 10.3390/bdcc8010003 |