Loading…

COSMO-CLM Performance and Projection of Daily and Hourly Temperatures Reaching 50 °C or Higher in Southern Iraq

Fortunately, extreme temperatures reaching 50 °C are not common on our planet. The capability of the consortium for small-scale modelling regional climate model (COSMO-CLM), with 0.44° resolution, to project future trends of an extremely hot environment with direct model output (DMO) is questioned....

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2020-11, Vol.11 (11), p.1155
Main Authors: Levi, Yoav, Mann, Yossi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fortunately, extreme temperatures reaching 50 °C are not common on our planet. The capability of the consortium for small-scale modelling regional climate model (COSMO-CLM), with 0.44° resolution, to project future trends of an extremely hot environment with direct model output (DMO) is questioned. The temperature distribution of COSMO-CLM output driven by reanalysis and RCP4.5 scenario in southern Iraq was remarkably good, with a slight temperature overestimation, compared to the overlapping observations from Basra airport. An attempt to enhance the DMO with a statistical downscaling method did not improve the results. The COSMO-CLM projection indicates that a very sharp increase in the number of consecutive hours and days with the temperature reaching 50 °C or higher will occur. During 1951–1980, consecutive hours and days reaching 50 °C were rare events. By the end of the century, the projected climate in southern Iraq contains up to 13 consecutive hours and 21 consecutive days reaching 50 °C or higher. As the average projected temperature will increase by ~2 °C compared to the recent climate, new records may be expected. However, the major climate change feature is the increase in consecutive hours and days of very high temperatures. These findings require adaptation measures to support future habitation of the region.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos11111155