Loading…

Aerosol absorption has an underappreciated role in historical precipitation change

Precipitation change has proven notoriously hard to simulate consistently between global climate models. Aerosol induced shortwave absorption over the historical era is also poorly constrained in both observations and modelling. These factors are closely linked, since absorption induced heating of t...

Full description

Saved in:
Bibliographic Details
Published in:Communications earth & environment 2022-10, Vol.3 (1), p.1-8, Article 242
Main Author: Samset, Bjørn H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Precipitation change has proven notoriously hard to simulate consistently between global climate models. Aerosol induced shortwave absorption over the historical era is also poorly constrained in both observations and modelling. These factors are closely linked, since absorption induced heating of the atmospheric column inhibits precipitation formation. Here I show that the spread in simulated aerosol absorption in the most recent generation of climate models (CMIP6) can be a dominating cause of uncertainty in simulated precipitation change, globally and regionally. Consequently, until improvements are made in scientific understanding of the key absorbing aerosol types, projections of precipitation change under future anthropogenic emissions will have major, irreducible uncertainties. Black carbon, which has recently been found to have only a weak influence on global surface temperature, regains prominence as a contributor to regional precipitation change and its historical and future evolution.
ISSN:2662-4435
2662-4435
DOI:10.1038/s43247-022-00576-6