Loading…
Cutting Force When Machining Hardened Steel and the Surface Roughness Achieved
This article deals primarily with the problem of determining the cutting force when machining hardened steels. For this study, the steel used was 100 Cr6, number 1.3505. The secondary aspects of the study focused on the evaluation of the surface quality of machined samples and the recommendation of...
Saved in:
Published in: | Applied sciences 2022-11, Vol.12 (22), p.11526 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article deals primarily with the problem of determining the cutting force when machining hardened steels. For this study, the steel used was 100 Cr6, number 1.3505. The secondary aspects of the study focused on the evaluation of the surface quality of machined samples and the recommendation of cutting conditions. A wide variety of components are used in engineering, the final heat treatment of which is hardening. These components are usually critical in a particular product. The quality of these components determines the correct functioning of the entire body of technical equipment, and ultimately, its service life. In our study, these are the core parts of thrust bearings, specifically the rolling elements. The subject of this experiment involves machining these components in the hardened state with cubic boron nitride tools and the continuous measurement of the cutting force using a dynamometer. The machining is carried out on a conventional lathe. A total of 12 combinations of cutting conditions were set. Specifically, for three cutting speeds of 130, 155 and 180 m·min−1, the feed rates of 0.05 and 0.1 mm·rev−1 and the cutting widths of 0.2 and 0.35 mm, were evaluated The evaluation assessed the surface quality by both touch and non-touch methods. A structural equation with the appropriate constants and exponents was then constructed from the data obtained using the dynamometer. The experiment confirmed the potential of achieving a value of the average arithmetic profile deviation Ra in the range of 0.3–0.4 when turning hardened steels with cubic boron nitride. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app122211526 |