Loading…
Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram
Background. The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives. T...
Saved in:
Published in: | Pulmonary medicine 2019, Vol.2019 (2019), p.1-7 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373 |
---|---|
cites | cdi_FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373 |
container_end_page | 7 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Pulmonary medicine |
container_volume | 2019 |
creator | Silva, Aristófanes Corrêa Higa, Claudio Saito, Eduardo Haruo Lopes, Agnaldo José Borguezan, Bruno Max Nunes, Rodolfo Acatauassú |
description | Background. The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives. The present study evaluated solid indeterminate nodules with a radiological stability suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods. A total of 100 chest CT scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. The kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms were classified into two basic patterns: peaks or plateaus. Results. The mean (MEN) KUR values of the SINRSBs and malignant nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an area under the curve (AUC) of 0.709 (p3.1, respectively, with an AUC of 0.709 (p |
doi_str_mv | 10.1155/2019/4071762 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e04aea5a06e4eec8375497502fb485b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607787571</galeid><doaj_id>oai_doaj_org_article_6e04aea5a06e4eec8375497502fb485b</doaj_id><sourcerecordid>A607787571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373</originalsourceid><addsrcrecordid>eNqNks9v0zAUgCMEYtPYjTOyhISQoJvtxHHCAakrP1YxgUQHV8u1XxKPxC6xw-i_yF-Fs5ZuRRxIDkmev_fF7_klyWOCTwhh7JRiUp5mmBOe03vJIcUlnpAiy-7v3tP8IDn2_grHKyspL8nD5CAlecEpLg6TXwvXGo3mVkOAvjNWBkAfnR5a8OjahAZJ9Flq41pXGyVbtAhyaVoT1mgx1DX4YGyNzsCa2sbgKzRFl_AzDD2gqZXt2huPXIVmrlsNATS6dJ2re7lq1mjeyZiPzqSPcWdRaAB9GPrgxhxpNVp8g2sL_kYwLm62hb66dugAvQHrx22cGx9GZfcoeVDJ1sPx9nmUfHn39nJ2Prn49H4-m15MVJ6yMNEsK0hZMoaLVOsqfnBGYs-KQilVsFSmDOtSlVnFsxyqnHBeVtWS05JCWqU8PUrmG6928kqsetPJfi2cNOIm4PpayD4Y1YLIAWcSJJM4hwxAFSlnWckZptUyK9gyul5vXKth2YFWYEMv2z3p_oo1jajdD5EXGJe0jILnW0Hvvg_xOERnvIK2lRbc4AVNCaV5rJFE9Olf6JUb-nhIkYojlMdKU3ZL1TIWYGzl4n_VKBXTHHNecHbjOvkHFW8NnVHOQmVifC_h2Z2EBmQbGh8PMhhn_T74cgOq3nnfQ7VrBsFinHkxzrzYznzEn9xt4A7-M-EReLEBGmO1vDb_qYPIQCVvaYo55ln6G6fTEzM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407661735</pqid></control><display><type>article</type><title>Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Silva, Aristófanes Corrêa ; Higa, Claudio ; Saito, Eduardo Haruo ; Lopes, Agnaldo José ; Borguezan, Bruno Max ; Nunes, Rodolfo Acatauassú</creator><contributor>Centanni, Stefano ; Stefano Centanni</contributor><creatorcontrib>Silva, Aristófanes Corrêa ; Higa, Claudio ; Saito, Eduardo Haruo ; Lopes, Agnaldo José ; Borguezan, Bruno Max ; Nunes, Rodolfo Acatauassú ; Centanni, Stefano ; Stefano Centanni</creatorcontrib><description>Background. The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives. The present study evaluated solid indeterminate nodules with a radiological stability suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods. A total of 100 chest CT scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. The kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms were classified into two basic patterns: peaks or plateaus. Results. The mean (MEN) KUR values of the SINRSBs and malignant nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an area under the curve (AUC) of 0.709 (p<0.0001). The MEN SKW values of the SINRSBs and malignant nodules were 1.73 ± 0.94 and 2.07 ± 1.01, respectively. The ROC curve showed that the sensitivity and specificity for distinguishing malignant nodules from SINRSBs were 65% and 66% for SKW values >3.1, respectively, with an AUC of 0.709 (p<0.0001). An analysis of the peak and plateau histograms revealed sensitivity, specificity, and accuracy values of 84%, 74%, and 79%, respectively. Conclusions. KUR, SKW, and histogram shape can help to noninvasively diagnose SINRSBs but should not be used alone or without considering clinical data.</description><identifier>ISSN: 2090-1836</identifier><identifier>EISSN: 2090-1844</identifier><identifier>DOI: 10.1155/2019/4071762</identifier><identifier>PMID: 31687208</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Archives & records ; Clinical medicine ; CT imaging ; Diagnosis, Differential ; Endoscopy ; Humans ; Image databases ; Image Processing, Computer-Assisted ; Kurtosis ; Lung cancer ; Lung Neoplasms - diagnostic imaging ; Medical imaging ; Models, Statistical ; Mortality ; R&D ; Research & development ; Retrospective Studies ; Sensitivity and Specificity ; Skewness ; Software ; Solitary Pulmonary Nodule - diagnostic imaging ; Specific gravity ; Tomography, X-Ray Computed</subject><ispartof>Pulmonary medicine, 2019, Vol.2019 (2019), p.1-7</ispartof><rights>Copyright © 2019 Bruno Max Borguezan et al.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>Copyright © 2019 Bruno Max Borguezan et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2019 Bruno Max Borguezan et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373</citedby><cites>FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373</cites><orcidid>0000-0001-8598-4878 ; 0000-0003-0423-2514 ; 0000-0002-0732-3713 ; 0000-0001-6687-5836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2407661735/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2407661735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,25734,27904,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31687208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Centanni, Stefano</contributor><contributor>Stefano Centanni</contributor><creatorcontrib>Silva, Aristófanes Corrêa</creatorcontrib><creatorcontrib>Higa, Claudio</creatorcontrib><creatorcontrib>Saito, Eduardo Haruo</creatorcontrib><creatorcontrib>Lopes, Agnaldo José</creatorcontrib><creatorcontrib>Borguezan, Bruno Max</creatorcontrib><creatorcontrib>Nunes, Rodolfo Acatauassú</creatorcontrib><title>Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram</title><title>Pulmonary medicine</title><addtitle>Pulm Med</addtitle><description>Background. The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives. The present study evaluated solid indeterminate nodules with a radiological stability suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods. A total of 100 chest CT scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. The kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms were classified into two basic patterns: peaks or plateaus. Results. The mean (MEN) KUR values of the SINRSBs and malignant nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an area under the curve (AUC) of 0.709 (p<0.0001). The MEN SKW values of the SINRSBs and malignant nodules were 1.73 ± 0.94 and 2.07 ± 1.01, respectively. The ROC curve showed that the sensitivity and specificity for distinguishing malignant nodules from SINRSBs were 65% and 66% for SKW values >3.1, respectively, with an AUC of 0.709 (p<0.0001). An analysis of the peak and plateau histograms revealed sensitivity, specificity, and accuracy values of 84%, 74%, and 79%, respectively. Conclusions. KUR, SKW, and histogram shape can help to noninvasively diagnose SINRSBs but should not be used alone or without considering clinical data.</description><subject>Algorithms</subject><subject>Archives & records</subject><subject>Clinical medicine</subject><subject>CT imaging</subject><subject>Diagnosis, Differential</subject><subject>Endoscopy</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image Processing, Computer-Assisted</subject><subject>Kurtosis</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Medical imaging</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>R&D</subject><subject>Research & development</subject><subject>Retrospective Studies</subject><subject>Sensitivity and Specificity</subject><subject>Skewness</subject><subject>Software</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>Specific gravity</subject><subject>Tomography, X-Ray Computed</subject><issn>2090-1836</issn><issn>2090-1844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9v0zAUgCMEYtPYjTOyhISQoJvtxHHCAakrP1YxgUQHV8u1XxKPxC6xw-i_yF-Fs5ZuRRxIDkmev_fF7_klyWOCTwhh7JRiUp5mmBOe03vJIcUlnpAiy-7v3tP8IDn2_grHKyspL8nD5CAlecEpLg6TXwvXGo3mVkOAvjNWBkAfnR5a8OjahAZJ9Flq41pXGyVbtAhyaVoT1mgx1DX4YGyNzsCa2sbgKzRFl_AzDD2gqZXt2huPXIVmrlsNATS6dJ2re7lq1mjeyZiPzqSPcWdRaAB9GPrgxhxpNVp8g2sL_kYwLm62hb66dugAvQHrx22cGx9GZfcoeVDJ1sPx9nmUfHn39nJ2Prn49H4-m15MVJ6yMNEsK0hZMoaLVOsqfnBGYs-KQilVsFSmDOtSlVnFsxyqnHBeVtWS05JCWqU8PUrmG6928kqsetPJfi2cNOIm4PpayD4Y1YLIAWcSJJM4hwxAFSlnWckZptUyK9gyul5vXKth2YFWYEMv2z3p_oo1jajdD5EXGJe0jILnW0Hvvg_xOERnvIK2lRbc4AVNCaV5rJFE9Olf6JUb-nhIkYojlMdKU3ZL1TIWYGzl4n_VKBXTHHNecHbjOvkHFW8NnVHOQmVifC_h2Z2EBmQbGh8PMhhn_T74cgOq3nnfQ7VrBsFinHkxzrzYznzEn9xt4A7-M-EReLEBGmO1vDb_qYPIQCVvaYo55ln6G6fTEzM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Silva, Aristófanes Corrêa</creator><creator>Higa, Claudio</creator><creator>Saito, Eduardo Haruo</creator><creator>Lopes, Agnaldo José</creator><creator>Borguezan, Bruno Max</creator><creator>Nunes, Rodolfo Acatauassú</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8598-4878</orcidid><orcidid>https://orcid.org/0000-0003-0423-2514</orcidid><orcidid>https://orcid.org/0000-0002-0732-3713</orcidid><orcidid>https://orcid.org/0000-0001-6687-5836</orcidid></search><sort><creationdate>2019</creationdate><title>Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram</title><author>Silva, Aristófanes Corrêa ; Higa, Claudio ; Saito, Eduardo Haruo ; Lopes, Agnaldo José ; Borguezan, Bruno Max ; Nunes, Rodolfo Acatauassú</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Archives & records</topic><topic>Clinical medicine</topic><topic>CT imaging</topic><topic>Diagnosis, Differential</topic><topic>Endoscopy</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image Processing, Computer-Assisted</topic><topic>Kurtosis</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Medical imaging</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>R&D</topic><topic>Research & development</topic><topic>Retrospective Studies</topic><topic>Sensitivity and Specificity</topic><topic>Skewness</topic><topic>Software</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>Specific gravity</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Aristófanes Corrêa</creatorcontrib><creatorcontrib>Higa, Claudio</creatorcontrib><creatorcontrib>Saito, Eduardo Haruo</creatorcontrib><creatorcontrib>Lopes, Agnaldo José</creatorcontrib><creatorcontrib>Borguezan, Bruno Max</creatorcontrib><creatorcontrib>Nunes, Rodolfo Acatauassú</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Pulmonary medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Aristófanes Corrêa</au><au>Higa, Claudio</au><au>Saito, Eduardo Haruo</au><au>Lopes, Agnaldo José</au><au>Borguezan, Bruno Max</au><au>Nunes, Rodolfo Acatauassú</au><au>Centanni, Stefano</au><au>Stefano Centanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram</atitle><jtitle>Pulmonary medicine</jtitle><addtitle>Pulm Med</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2090-1836</issn><eissn>2090-1844</eissn><abstract>Background. The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives. The present study evaluated solid indeterminate nodules with a radiological stability suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods. A total of 100 chest CT scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. The kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms were classified into two basic patterns: peaks or plateaus. Results. The mean (MEN) KUR values of the SINRSBs and malignant nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an area under the curve (AUC) of 0.709 (p<0.0001). The MEN SKW values of the SINRSBs and malignant nodules were 1.73 ± 0.94 and 2.07 ± 1.01, respectively. The ROC curve showed that the sensitivity and specificity for distinguishing malignant nodules from SINRSBs were 65% and 66% for SKW values >3.1, respectively, with an AUC of 0.709 (p<0.0001). An analysis of the peak and plateau histograms revealed sensitivity, specificity, and accuracy values of 84%, 74%, and 79%, respectively. Conclusions. KUR, SKW, and histogram shape can help to noninvasively diagnose SINRSBs but should not be used alone or without considering clinical data.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31687208</pmid><doi>10.1155/2019/4071762</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8598-4878</orcidid><orcidid>https://orcid.org/0000-0003-0423-2514</orcidid><orcidid>https://orcid.org/0000-0002-0732-3713</orcidid><orcidid>https://orcid.org/0000-0001-6687-5836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-1836 |
ispartof | Pulmonary medicine, 2019, Vol.2019 (2019), p.1-7 |
issn | 2090-1836 2090-1844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6e04aea5a06e4eec8375497502fb485b |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central |
subjects | Algorithms Archives & records Clinical medicine CT imaging Diagnosis, Differential Endoscopy Humans Image databases Image Processing, Computer-Assisted Kurtosis Lung cancer Lung Neoplasms - diagnostic imaging Medical imaging Models, Statistical Mortality R&D Research & development Retrospective Studies Sensitivity and Specificity Skewness Software Solitary Pulmonary Nodule - diagnostic imaging Specific gravity Tomography, X-Ray Computed |
title | Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20Indeterminate%20Nodules%20with%20a%20Radiological%20Stability%20Suggesting%20Benignity:%20A%20Texture%20Analysis%20of%20Computed%20Tomography%20Images%20Based%20on%20the%20Kurtosis%20and%20Skewness%20of%20the%20Nodule%20Volume%20Density%20Histogram&rft.jtitle=Pulmonary%20medicine&rft.au=Silva,%20Arist%C3%B3fanes%20Corr%C3%AAa&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2090-1836&rft.eissn=2090-1844&rft_id=info:doi/10.1155/2019/4071762&rft_dat=%3Cgale_doaj_%3EA607787571%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635t-d54819955083ddf48175118488ccc853a350d9c94f746ef61779ffb7292e3f373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407661735&rft_id=info:pmid/31687208&rft_galeid=A607787571&rfr_iscdi=true |