Loading…
The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability
The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was...
Saved in:
Published in: | Agriculture (Basel) 2024-11, Vol.14 (11), p.2085 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933 |
container_end_page | |
container_issue | 11 |
container_start_page | 2085 |
container_title | Agriculture (Basel) |
container_volume | 14 |
creator | de Souza, Paloma Pimentel Machado, Deivid Lopes de Freitas, Micael Silva Bezerra, Aracy Camilla Tardin Pinheiro Guimarães, Tiara Moraes da Silva, Eder Marcos do Nascimento, Natanael Moreira Borges, Rafael da Silva Costa, Vladimir Eliodoro Costa, Claudio Hideo Martins da Cruz, Simério Carlos Silva |
description | The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon. |
doi_str_mv | 10.3390/agriculture14112085 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e2abd8dbf6e4115a993bb941b716577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A817929834</galeid><doaj_id>oai_doaj_org_article_6e2abd8dbf6e4115a993bb941b716577</doaj_id><sourcerecordid>A817929834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933</originalsourceid><addsrcrecordid>eNptUU1rGzEQXUIDCUl-QS-CnDfVx652dTSmHwHTHuycxUgauXLWK1fSHvzvq8Sl9NCZwwzDe4_HvKb5yOiTEIp-gn0KdpnKkpB1jHE69lfNLafD0NJu4B_-2W-ah5wPtJZiYqTytsHdTyTrFE9ku1iLOYc4k-05Fzxm8jI7TOR7bHdhmmCPZDUVTJmUytkuyYNFsoFzxWxjmMgaknljl2hfCcyubmDCFMr5vrn2MGV8-DPvmpcvn3frb-3mx9fn9WrTWi55abuB2aH3RinGRO9o711nPTonrKeq4xI8Y44pjtIwtJYj7ZHKTkjlYFRC3DXPF10X4aBPKRwhnXWEoN8PMe01pBLshFoiB-NGZ7zE-rUelBLGqI6Zgcl-GKrW40XrlOKvBXPRh7ikudrXggk-ciHEWFFPF9QeqmiYfSwJbG2Hx2DjjD7U-2pkg-JqFF0liAvBpphzQv_XJqP6LU_9nzzFb-ZElWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132823338</pqid></control><display><type>article</type><title>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</title><source>Publicly Available Content Database</source><creator>de Souza, Paloma Pimentel ; Machado, Deivid Lopes ; de Freitas, Micael Silva ; Bezerra, Aracy Camilla Tardin Pinheiro ; Guimarães, Tiara Moraes ; da Silva, Eder Marcos ; do Nascimento, Natanael Moreira ; Borges, Rafael da Silva ; Costa, Vladimir Eliodoro ; Costa, Claudio Hideo Martins da ; Cruz, Simério Carlos Silva</creator><creatorcontrib>de Souza, Paloma Pimentel ; Machado, Deivid Lopes ; de Freitas, Micael Silva ; Bezerra, Aracy Camilla Tardin Pinheiro ; Guimarães, Tiara Moraes ; da Silva, Eder Marcos ; do Nascimento, Natanael Moreira ; Borges, Rafael da Silva ; Costa, Vladimir Eliodoro ; Costa, Claudio Hideo Martins da ; Cruz, Simério Carlos Silva</creatorcontrib><description>The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture14112085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural practices ; Autumn ; Biomass ; Carbon ; Carbon 13 ; Carbon content ; Carbon sequestration ; Cereal crops ; Composite materials ; Corn ; Cover crops ; crop diversification ; Crop residues ; Crops ; Decomposition ; Density ; Ecological succession ; Experiments ; Fractionation ; Grain size ; Harvest ; Microorganisms ; Millet ; Nitrogen ; No-till cropping ; No-tillage ; Organic carbon ; Organic matter ; Organic soils ; pearl millet ; Pennisetum glaucum ; physical fractionation ; Porosity ; Productivity ; soil carbon pool ; Soil density ; Soil layers ; Soil organic matter ; Soil porosity ; Soil stability ; Soil stabilization ; Soil structure ; Soil testing ; Soils ; Soybean ; Soybeans ; Stocks ; Summer ; Surface layers ; Surface stability ; Tillage ; Total organic carbon ; Tropical environment ; Tropical environments ; Urochloa ruziziensis ; Vegetables ; Winter ; Zea mays</subject><ispartof>Agriculture (Basel), 2024-11, Vol.14 (11), p.2085</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933</cites><orcidid>0000-0002-0567-4288 ; 0000-0003-1781-8709 ; 0000-0002-6327-8590 ; 0009-0001-9890-9575 ; 0000-0003-3889-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3132823338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3132823338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>de Souza, Paloma Pimentel</creatorcontrib><creatorcontrib>Machado, Deivid Lopes</creatorcontrib><creatorcontrib>de Freitas, Micael Silva</creatorcontrib><creatorcontrib>Bezerra, Aracy Camilla Tardin Pinheiro</creatorcontrib><creatorcontrib>Guimarães, Tiara Moraes</creatorcontrib><creatorcontrib>da Silva, Eder Marcos</creatorcontrib><creatorcontrib>do Nascimento, Natanael Moreira</creatorcontrib><creatorcontrib>Borges, Rafael da Silva</creatorcontrib><creatorcontrib>Costa, Vladimir Eliodoro</creatorcontrib><creatorcontrib>Costa, Claudio Hideo Martins da</creatorcontrib><creatorcontrib>Cruz, Simério Carlos Silva</creatorcontrib><title>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</title><title>Agriculture (Basel)</title><description>The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.</description><subject>Agricultural practices</subject><subject>Autumn</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon content</subject><subject>Carbon sequestration</subject><subject>Cereal crops</subject><subject>Composite materials</subject><subject>Corn</subject><subject>Cover crops</subject><subject>crop diversification</subject><subject>Crop residues</subject><subject>Crops</subject><subject>Decomposition</subject><subject>Density</subject><subject>Ecological succession</subject><subject>Experiments</subject><subject>Fractionation</subject><subject>Grain size</subject><subject>Harvest</subject><subject>Microorganisms</subject><subject>Millet</subject><subject>Nitrogen</subject><subject>No-till cropping</subject><subject>No-tillage</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>pearl millet</subject><subject>Pennisetum glaucum</subject><subject>physical fractionation</subject><subject>Porosity</subject><subject>Productivity</subject><subject>soil carbon pool</subject><subject>Soil density</subject><subject>Soil layers</subject><subject>Soil organic matter</subject><subject>Soil porosity</subject><subject>Soil stability</subject><subject>Soil stabilization</subject><subject>Soil structure</subject><subject>Soil testing</subject><subject>Soils</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>Stocks</subject><subject>Summer</subject><subject>Surface layers</subject><subject>Surface stability</subject><subject>Tillage</subject><subject>Total organic carbon</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Urochloa ruziziensis</subject><subject>Vegetables</subject><subject>Winter</subject><subject>Zea mays</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rGzEQXUIDCUl-QS-CnDfVx652dTSmHwHTHuycxUgauXLWK1fSHvzvq8Sl9NCZwwzDe4_HvKb5yOiTEIp-gn0KdpnKkpB1jHE69lfNLafD0NJu4B_-2W-ah5wPtJZiYqTytsHdTyTrFE9ku1iLOYc4k-05Fzxm8jI7TOR7bHdhmmCPZDUVTJmUytkuyYNFsoFzxWxjmMgaknljl2hfCcyubmDCFMr5vrn2MGV8-DPvmpcvn3frb-3mx9fn9WrTWi55abuB2aH3RinGRO9o711nPTonrKeq4xI8Y44pjtIwtJYj7ZHKTkjlYFRC3DXPF10X4aBPKRwhnXWEoN8PMe01pBLshFoiB-NGZ7zE-rUelBLGqI6Zgcl-GKrW40XrlOKvBXPRh7ikudrXggk-ciHEWFFPF9QeqmiYfSwJbG2Hx2DjjD7U-2pkg-JqFF0liAvBpphzQv_XJqP6LU_9nzzFb-ZElWg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>de Souza, Paloma Pimentel</creator><creator>Machado, Deivid Lopes</creator><creator>de Freitas, Micael Silva</creator><creator>Bezerra, Aracy Camilla Tardin Pinheiro</creator><creator>Guimarães, Tiara Moraes</creator><creator>da Silva, Eder Marcos</creator><creator>do Nascimento, Natanael Moreira</creator><creator>Borges, Rafael da Silva</creator><creator>Costa, Vladimir Eliodoro</creator><creator>Costa, Claudio Hideo Martins da</creator><creator>Cruz, Simério Carlos Silva</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0567-4288</orcidid><orcidid>https://orcid.org/0000-0003-1781-8709</orcidid><orcidid>https://orcid.org/0000-0002-6327-8590</orcidid><orcidid>https://orcid.org/0009-0001-9890-9575</orcidid><orcidid>https://orcid.org/0000-0003-3889-7514</orcidid></search><sort><creationdate>20241101</creationdate><title>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</title><author>de Souza, Paloma Pimentel ; Machado, Deivid Lopes ; de Freitas, Micael Silva ; Bezerra, Aracy Camilla Tardin Pinheiro ; Guimarães, Tiara Moraes ; da Silva, Eder Marcos ; do Nascimento, Natanael Moreira ; Borges, Rafael da Silva ; Costa, Vladimir Eliodoro ; Costa, Claudio Hideo Martins da ; Cruz, Simério Carlos Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural practices</topic><topic>Autumn</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon content</topic><topic>Carbon sequestration</topic><topic>Cereal crops</topic><topic>Composite materials</topic><topic>Corn</topic><topic>Cover crops</topic><topic>crop diversification</topic><topic>Crop residues</topic><topic>Crops</topic><topic>Decomposition</topic><topic>Density</topic><topic>Ecological succession</topic><topic>Experiments</topic><topic>Fractionation</topic><topic>Grain size</topic><topic>Harvest</topic><topic>Microorganisms</topic><topic>Millet</topic><topic>Nitrogen</topic><topic>No-till cropping</topic><topic>No-tillage</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>pearl millet</topic><topic>Pennisetum glaucum</topic><topic>physical fractionation</topic><topic>Porosity</topic><topic>Productivity</topic><topic>soil carbon pool</topic><topic>Soil density</topic><topic>Soil layers</topic><topic>Soil organic matter</topic><topic>Soil porosity</topic><topic>Soil stability</topic><topic>Soil stabilization</topic><topic>Soil structure</topic><topic>Soil testing</topic><topic>Soils</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>Stocks</topic><topic>Summer</topic><topic>Surface layers</topic><topic>Surface stability</topic><topic>Tillage</topic><topic>Total organic carbon</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Urochloa ruziziensis</topic><topic>Vegetables</topic><topic>Winter</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Paloma Pimentel</creatorcontrib><creatorcontrib>Machado, Deivid Lopes</creatorcontrib><creatorcontrib>de Freitas, Micael Silva</creatorcontrib><creatorcontrib>Bezerra, Aracy Camilla Tardin Pinheiro</creatorcontrib><creatorcontrib>Guimarães, Tiara Moraes</creatorcontrib><creatorcontrib>da Silva, Eder Marcos</creatorcontrib><creatorcontrib>do Nascimento, Natanael Moreira</creatorcontrib><creatorcontrib>Borges, Rafael da Silva</creatorcontrib><creatorcontrib>Costa, Vladimir Eliodoro</creatorcontrib><creatorcontrib>Costa, Claudio Hideo Martins da</creatorcontrib><creatorcontrib>Cruz, Simério Carlos Silva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Paloma Pimentel</au><au>Machado, Deivid Lopes</au><au>de Freitas, Micael Silva</au><au>Bezerra, Aracy Camilla Tardin Pinheiro</au><au>Guimarães, Tiara Moraes</au><au>da Silva, Eder Marcos</au><au>do Nascimento, Natanael Moreira</au><au>Borges, Rafael da Silva</au><au>Costa, Vladimir Eliodoro</au><au>Costa, Claudio Hideo Martins da</au><au>Cruz, Simério Carlos Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</atitle><jtitle>Agriculture (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>2085</spage><pages>2085-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture14112085</doi><orcidid>https://orcid.org/0000-0002-0567-4288</orcidid><orcidid>https://orcid.org/0000-0003-1781-8709</orcidid><orcidid>https://orcid.org/0000-0002-6327-8590</orcidid><orcidid>https://orcid.org/0009-0001-9890-9575</orcidid><orcidid>https://orcid.org/0000-0003-3889-7514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0472 |
ispartof | Agriculture (Basel), 2024-11, Vol.14 (11), p.2085 |
issn | 2077-0472 2077-0472 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6e2abd8dbf6e4115a993bb941b716577 |
source | Publicly Available Content Database |
subjects | Agricultural practices Autumn Biomass Carbon Carbon 13 Carbon content Carbon sequestration Cereal crops Composite materials Corn Cover crops crop diversification Crop residues Crops Decomposition Density Ecological succession Experiments Fractionation Grain size Harvest Microorganisms Millet Nitrogen No-till cropping No-tillage Organic carbon Organic matter Organic soils pearl millet Pennisetum glaucum physical fractionation Porosity Productivity soil carbon pool Soil density Soil layers Soil organic matter Soil porosity Soil stability Soil stabilization Soil structure Soil testing Soils Soybean Soybeans Stocks Summer Surface layers Surface stability Tillage Total organic carbon Tropical environment Tropical environments Urochloa ruziziensis Vegetables Winter Zea mays |
title | The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crop%20Succession%20Systems%20Under%20No-Tillage%20Alters%20the%20Surface%20Layer%20Soil%20Carbon%20Stock%20and%20Stability&rft.jtitle=Agriculture%20(Basel)&rft.au=de%20Souza,%20Paloma%20Pimentel&rft.date=2024-11-01&rft.volume=14&rft.issue=11&rft.spage=2085&rft.pages=2085-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture14112085&rft_dat=%3Cgale_doaj_%3EA817929834%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132823338&rft_id=info:pmid/&rft_galeid=A817929834&rfr_iscdi=true |