Loading…

The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability

The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2024-11, Vol.14 (11), p.2085
Main Authors: de Souza, Paloma Pimentel, Machado, Deivid Lopes, de Freitas, Micael Silva, Bezerra, Aracy Camilla Tardin Pinheiro, Guimarães, Tiara Moraes, da Silva, Eder Marcos, do Nascimento, Natanael Moreira, Borges, Rafael da Silva, Costa, Vladimir Eliodoro, Costa, Claudio Hideo Martins da, Cruz, Simério Carlos Silva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933
container_end_page
container_issue 11
container_start_page 2085
container_title Agriculture (Basel)
container_volume 14
creator de Souza, Paloma Pimentel
Machado, Deivid Lopes
de Freitas, Micael Silva
Bezerra, Aracy Camilla Tardin Pinheiro
Guimarães, Tiara Moraes
da Silva, Eder Marcos
do Nascimento, Natanael Moreira
Borges, Rafael da Silva
Costa, Vladimir Eliodoro
Costa, Claudio Hideo Martins da
Cruz, Simério Carlos Silva
description The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.
doi_str_mv 10.3390/agriculture14112085
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e2abd8dbf6e4115a993bb941b716577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A817929834</galeid><doaj_id>oai_doaj_org_article_6e2abd8dbf6e4115a993bb941b716577</doaj_id><sourcerecordid>A817929834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933</originalsourceid><addsrcrecordid>eNptUU1rGzEQXUIDCUl-QS-CnDfVx652dTSmHwHTHuycxUgauXLWK1fSHvzvq8Sl9NCZwwzDe4_HvKb5yOiTEIp-gn0KdpnKkpB1jHE69lfNLafD0NJu4B_-2W-ah5wPtJZiYqTytsHdTyTrFE9ku1iLOYc4k-05Fzxm8jI7TOR7bHdhmmCPZDUVTJmUytkuyYNFsoFzxWxjmMgaknljl2hfCcyubmDCFMr5vrn2MGV8-DPvmpcvn3frb-3mx9fn9WrTWi55abuB2aH3RinGRO9o711nPTonrKeq4xI8Y44pjtIwtJYj7ZHKTkjlYFRC3DXPF10X4aBPKRwhnXWEoN8PMe01pBLshFoiB-NGZ7zE-rUelBLGqI6Zgcl-GKrW40XrlOKvBXPRh7ikudrXggk-ciHEWFFPF9QeqmiYfSwJbG2Hx2DjjD7U-2pkg-JqFF0liAvBpphzQv_XJqP6LU_9nzzFb-ZElWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132823338</pqid></control><display><type>article</type><title>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</title><source>Publicly Available Content Database</source><creator>de Souza, Paloma Pimentel ; Machado, Deivid Lopes ; de Freitas, Micael Silva ; Bezerra, Aracy Camilla Tardin Pinheiro ; Guimarães, Tiara Moraes ; da Silva, Eder Marcos ; do Nascimento, Natanael Moreira ; Borges, Rafael da Silva ; Costa, Vladimir Eliodoro ; Costa, Claudio Hideo Martins da ; Cruz, Simério Carlos Silva</creator><creatorcontrib>de Souza, Paloma Pimentel ; Machado, Deivid Lopes ; de Freitas, Micael Silva ; Bezerra, Aracy Camilla Tardin Pinheiro ; Guimarães, Tiara Moraes ; da Silva, Eder Marcos ; do Nascimento, Natanael Moreira ; Borges, Rafael da Silva ; Costa, Vladimir Eliodoro ; Costa, Claudio Hideo Martins da ; Cruz, Simério Carlos Silva</creatorcontrib><description>The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture14112085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural practices ; Autumn ; Biomass ; Carbon ; Carbon 13 ; Carbon content ; Carbon sequestration ; Cereal crops ; Composite materials ; Corn ; Cover crops ; crop diversification ; Crop residues ; Crops ; Decomposition ; Density ; Ecological succession ; Experiments ; Fractionation ; Grain size ; Harvest ; Microorganisms ; Millet ; Nitrogen ; No-till cropping ; No-tillage ; Organic carbon ; Organic matter ; Organic soils ; pearl millet ; Pennisetum glaucum ; physical fractionation ; Porosity ; Productivity ; soil carbon pool ; Soil density ; Soil layers ; Soil organic matter ; Soil porosity ; Soil stability ; Soil stabilization ; Soil structure ; Soil testing ; Soils ; Soybean ; Soybeans ; Stocks ; Summer ; Surface layers ; Surface stability ; Tillage ; Total organic carbon ; Tropical environment ; Tropical environments ; Urochloa ruziziensis ; Vegetables ; Winter ; Zea mays</subject><ispartof>Agriculture (Basel), 2024-11, Vol.14 (11), p.2085</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933</cites><orcidid>0000-0002-0567-4288 ; 0000-0003-1781-8709 ; 0000-0002-6327-8590 ; 0009-0001-9890-9575 ; 0000-0003-3889-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3132823338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3132823338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>de Souza, Paloma Pimentel</creatorcontrib><creatorcontrib>Machado, Deivid Lopes</creatorcontrib><creatorcontrib>de Freitas, Micael Silva</creatorcontrib><creatorcontrib>Bezerra, Aracy Camilla Tardin Pinheiro</creatorcontrib><creatorcontrib>Guimarães, Tiara Moraes</creatorcontrib><creatorcontrib>da Silva, Eder Marcos</creatorcontrib><creatorcontrib>do Nascimento, Natanael Moreira</creatorcontrib><creatorcontrib>Borges, Rafael da Silva</creatorcontrib><creatorcontrib>Costa, Vladimir Eliodoro</creatorcontrib><creatorcontrib>Costa, Claudio Hideo Martins da</creatorcontrib><creatorcontrib>Cruz, Simério Carlos Silva</creatorcontrib><title>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</title><title>Agriculture (Basel)</title><description>The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.</description><subject>Agricultural practices</subject><subject>Autumn</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon content</subject><subject>Carbon sequestration</subject><subject>Cereal crops</subject><subject>Composite materials</subject><subject>Corn</subject><subject>Cover crops</subject><subject>crop diversification</subject><subject>Crop residues</subject><subject>Crops</subject><subject>Decomposition</subject><subject>Density</subject><subject>Ecological succession</subject><subject>Experiments</subject><subject>Fractionation</subject><subject>Grain size</subject><subject>Harvest</subject><subject>Microorganisms</subject><subject>Millet</subject><subject>Nitrogen</subject><subject>No-till cropping</subject><subject>No-tillage</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>pearl millet</subject><subject>Pennisetum glaucum</subject><subject>physical fractionation</subject><subject>Porosity</subject><subject>Productivity</subject><subject>soil carbon pool</subject><subject>Soil density</subject><subject>Soil layers</subject><subject>Soil organic matter</subject><subject>Soil porosity</subject><subject>Soil stability</subject><subject>Soil stabilization</subject><subject>Soil structure</subject><subject>Soil testing</subject><subject>Soils</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>Stocks</subject><subject>Summer</subject><subject>Surface layers</subject><subject>Surface stability</subject><subject>Tillage</subject><subject>Total organic carbon</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Urochloa ruziziensis</subject><subject>Vegetables</subject><subject>Winter</subject><subject>Zea mays</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rGzEQXUIDCUl-QS-CnDfVx652dTSmHwHTHuycxUgauXLWK1fSHvzvq8Sl9NCZwwzDe4_HvKb5yOiTEIp-gn0KdpnKkpB1jHE69lfNLafD0NJu4B_-2W-ah5wPtJZiYqTytsHdTyTrFE9ku1iLOYc4k-05Fzxm8jI7TOR7bHdhmmCPZDUVTJmUytkuyYNFsoFzxWxjmMgaknljl2hfCcyubmDCFMr5vrn2MGV8-DPvmpcvn3frb-3mx9fn9WrTWi55abuB2aH3RinGRO9o711nPTonrKeq4xI8Y44pjtIwtJYj7ZHKTkjlYFRC3DXPF10X4aBPKRwhnXWEoN8PMe01pBLshFoiB-NGZ7zE-rUelBLGqI6Zgcl-GKrW40XrlOKvBXPRh7ikudrXggk-ciHEWFFPF9QeqmiYfSwJbG2Hx2DjjD7U-2pkg-JqFF0liAvBpphzQv_XJqP6LU_9nzzFb-ZElWg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>de Souza, Paloma Pimentel</creator><creator>Machado, Deivid Lopes</creator><creator>de Freitas, Micael Silva</creator><creator>Bezerra, Aracy Camilla Tardin Pinheiro</creator><creator>Guimarães, Tiara Moraes</creator><creator>da Silva, Eder Marcos</creator><creator>do Nascimento, Natanael Moreira</creator><creator>Borges, Rafael da Silva</creator><creator>Costa, Vladimir Eliodoro</creator><creator>Costa, Claudio Hideo Martins da</creator><creator>Cruz, Simério Carlos Silva</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0567-4288</orcidid><orcidid>https://orcid.org/0000-0003-1781-8709</orcidid><orcidid>https://orcid.org/0000-0002-6327-8590</orcidid><orcidid>https://orcid.org/0009-0001-9890-9575</orcidid><orcidid>https://orcid.org/0000-0003-3889-7514</orcidid></search><sort><creationdate>20241101</creationdate><title>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</title><author>de Souza, Paloma Pimentel ; Machado, Deivid Lopes ; de Freitas, Micael Silva ; Bezerra, Aracy Camilla Tardin Pinheiro ; Guimarães, Tiara Moraes ; da Silva, Eder Marcos ; do Nascimento, Natanael Moreira ; Borges, Rafael da Silva ; Costa, Vladimir Eliodoro ; Costa, Claudio Hideo Martins da ; Cruz, Simério Carlos Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural practices</topic><topic>Autumn</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon content</topic><topic>Carbon sequestration</topic><topic>Cereal crops</topic><topic>Composite materials</topic><topic>Corn</topic><topic>Cover crops</topic><topic>crop diversification</topic><topic>Crop residues</topic><topic>Crops</topic><topic>Decomposition</topic><topic>Density</topic><topic>Ecological succession</topic><topic>Experiments</topic><topic>Fractionation</topic><topic>Grain size</topic><topic>Harvest</topic><topic>Microorganisms</topic><topic>Millet</topic><topic>Nitrogen</topic><topic>No-till cropping</topic><topic>No-tillage</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>pearl millet</topic><topic>Pennisetum glaucum</topic><topic>physical fractionation</topic><topic>Porosity</topic><topic>Productivity</topic><topic>soil carbon pool</topic><topic>Soil density</topic><topic>Soil layers</topic><topic>Soil organic matter</topic><topic>Soil porosity</topic><topic>Soil stability</topic><topic>Soil stabilization</topic><topic>Soil structure</topic><topic>Soil testing</topic><topic>Soils</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>Stocks</topic><topic>Summer</topic><topic>Surface layers</topic><topic>Surface stability</topic><topic>Tillage</topic><topic>Total organic carbon</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Urochloa ruziziensis</topic><topic>Vegetables</topic><topic>Winter</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Paloma Pimentel</creatorcontrib><creatorcontrib>Machado, Deivid Lopes</creatorcontrib><creatorcontrib>de Freitas, Micael Silva</creatorcontrib><creatorcontrib>Bezerra, Aracy Camilla Tardin Pinheiro</creatorcontrib><creatorcontrib>Guimarães, Tiara Moraes</creatorcontrib><creatorcontrib>da Silva, Eder Marcos</creatorcontrib><creatorcontrib>do Nascimento, Natanael Moreira</creatorcontrib><creatorcontrib>Borges, Rafael da Silva</creatorcontrib><creatorcontrib>Costa, Vladimir Eliodoro</creatorcontrib><creatorcontrib>Costa, Claudio Hideo Martins da</creatorcontrib><creatorcontrib>Cruz, Simério Carlos Silva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Paloma Pimentel</au><au>Machado, Deivid Lopes</au><au>de Freitas, Micael Silva</au><au>Bezerra, Aracy Camilla Tardin Pinheiro</au><au>Guimarães, Tiara Moraes</au><au>da Silva, Eder Marcos</au><au>do Nascimento, Natanael Moreira</au><au>Borges, Rafael da Silva</au><au>Costa, Vladimir Eliodoro</au><au>Costa, Claudio Hideo Martins da</au><au>Cruz, Simério Carlos Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability</atitle><jtitle>Agriculture (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>2085</spage><pages>2085-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>The main challenge of the no-tillage system (NTS) is to reconcile productivity, the maintenance of surface residues, and the stabilization of soil organic matter (SOM). To address this challenge, particularly in tropical regions, various cover crops have been tested. The objective of this study was to test the effects of agricultural crop succession systems on the stock and stability of soil organic carbon in different surface layers of the soils. The research was carried out in the state of Goiás, Brazil, in an experiment set up in 2016, designed in randomized blocks with a split-plot scheme (treatments and soil layers), comprising four repetitions (blocks). The treatments (plots) consisted of crops grown in succession to soybean, which were as follows: T1—soybean/corn (Zea mays); T2—soybean/pearl millet (Pennisetum glaucum); T3—soybean/Urochloa ruziziensis (brachiaria); and T4—corn + Urochloa ruziziensis. The subplots represented the following soil layers: 0–5, 5–10, 10–20, and 20–40 cm. We evaluated the biomass dry mass and the soil parameters such as soil density, total porosity, and light organic matter across all layers. The organic carbon, grain size fractionation (mineral-associated organic carbon—MOC; sand-sized carbon—POC), and isotopic composition (δ13C) were determined in the 0–5 and 5–10 cm layers. The highest biomass dry production was observed in the soybean/pearl millet succession, which reduced the soil density and increased the total porosity in the surface layer. The soybean/pearl millet treatment produced high amounts of light organic matter, particularly in the 0–5 cm layer, a result also found for the soybean/brachiaria and soybean/corn + brachiaria systems. The crop successions did not alter the soil carbon stock or stability; however, the surface layer stored the highest amount of carbon, with elevated total organic carbon values and carbon stocks and stability (MOC and POC). Overall, in this study, replacing corn with other crops in succession with soybean did not affect the stock or stability of soil organic carbon. The species grown in succession with soybean contributed to the higher surface carbon stock and stability, promoting the formation of more stable and recalcitrant carbon.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture14112085</doi><orcidid>https://orcid.org/0000-0002-0567-4288</orcidid><orcidid>https://orcid.org/0000-0003-1781-8709</orcidid><orcidid>https://orcid.org/0000-0002-6327-8590</orcidid><orcidid>https://orcid.org/0009-0001-9890-9575</orcidid><orcidid>https://orcid.org/0000-0003-3889-7514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2024-11, Vol.14 (11), p.2085
issn 2077-0472
2077-0472
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6e2abd8dbf6e4115a993bb941b716577
source Publicly Available Content Database
subjects Agricultural practices
Autumn
Biomass
Carbon
Carbon 13
Carbon content
Carbon sequestration
Cereal crops
Composite materials
Corn
Cover crops
crop diversification
Crop residues
Crops
Decomposition
Density
Ecological succession
Experiments
Fractionation
Grain size
Harvest
Microorganisms
Millet
Nitrogen
No-till cropping
No-tillage
Organic carbon
Organic matter
Organic soils
pearl millet
Pennisetum glaucum
physical fractionation
Porosity
Productivity
soil carbon pool
Soil density
Soil layers
Soil organic matter
Soil porosity
Soil stability
Soil stabilization
Soil structure
Soil testing
Soils
Soybean
Soybeans
Stocks
Summer
Surface layers
Surface stability
Tillage
Total organic carbon
Tropical environment
Tropical environments
Urochloa ruziziensis
Vegetables
Winter
Zea mays
title The Crop Succession Systems Under No-Tillage Alters the Surface Layer Soil Carbon Stock and Stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crop%20Succession%20Systems%20Under%20No-Tillage%20Alters%20the%20Surface%20Layer%20Soil%20Carbon%20Stock%20and%20Stability&rft.jtitle=Agriculture%20(Basel)&rft.au=de%20Souza,%20Paloma%20Pimentel&rft.date=2024-11-01&rft.volume=14&rft.issue=11&rft.spage=2085&rft.pages=2085-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture14112085&rft_dat=%3Cgale_doaj_%3EA817929834%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-471c75fb991135d05fd4cfedd3cf09426af11d192e6b1ecc2e05e064369da8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132823338&rft_id=info:pmid/&rft_galeid=A817929834&rfr_iscdi=true