Loading…

Genetic Diversity and Evolutionary Relationships of Chinese Pepper Based on nrDNA Markers

Chinese pepper, referring to Zanthoxylum bungeanum Maxim. and Zanthoxylum armatum DC. species, is an important spice crop that has long attracted people’s interest due to its extensive application in Asian cuisine to improve taste. Numerous cultivars have been developed during the long history of do...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2020-05, Vol.11 (5), p.543
Main Authors: Feng, Shijing, Niu, Jinshuang, Liu, Zhenshan, Tian, Lu, Wang, Xiangyuan, Wei, Anzhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chinese pepper, referring to Zanthoxylum bungeanum Maxim. and Zanthoxylum armatum DC. species, is an important spice crop that has long attracted people’s interest due to its extensive application in Asian cuisine to improve taste. Numerous cultivars have been developed during the long history of domestication and cultivation. However, little to no information is available on the genetic diversity and evolutionary relationships of Chinese pepper cultivars and their historical diversification has not been clarified. Herein, we sequenced two nrDNA non-coding region markers, the external transcribed spacer (ETS) and the internal transcribed spacer 2 (ITS2), to assess genetic diversity and phylogenetic relationships among 39 cultivated and wild populations of Chinese pepper from eight provinces and to address the question of ancient demographic trends which were probably influenced by changing climate during evolutionary history. In total, 31 haplotypes were identified based on 101 polymorphism sites. Our results revealed relatively high level of genetic variation despite long-term cultivation of this crop. AMOVA revealed that genetic variation existed predominantly within provinces rather than among provinces. The genetic structure result based on haplotype network analysis largely reflected historical records, which suggested a Gansu origin for Chinese pepper and an ancient west-to-east spread of Chinese pepper circulating in China. We also provided evidence that changing Pleistocene climates had shaped the demographic trends of Chinese pepper. Taken together, our findings not only suggest that Chinese pepper is a dynamic genetic system that responds to evolutionary forces, but it also provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of Chinese pepper and for improving the genetic basis for breeding the cultivars.
ISSN:1999-4907
1999-4907
DOI:10.3390/f11050543