Loading…
Impact of combining GRACE and GOCE gravity data on ocean circulation estimates
With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the m...
Saved in:
Published in: | Ocean science 2012-02, Vol.8 (1), p.65-79 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523 |
container_end_page | 79 |
container_issue | 1 |
container_start_page | 65 |
container_title | Ocean science |
container_volume | 8 |
creator | JanjiÄ, T Schröter, J Savcenko, R Bosch, W Albertella, A Rummel, R Klatt, O |
description | With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.) |
doi_str_mv | 10.5194/os-8-65-2012 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e4f647eed0042f5bea3cf0477b5849e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481446971</galeid><doaj_id>oai_doaj_org_article_6e4f647eed0042f5bea3cf0477b5849e</doaj_id><sourcerecordid>A481446971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</originalsourceid><addsrcrecordid>eNptkU-LFDEQxRtRcF29-QEaPQn2mv_pHIdhHQcWF1Y9h-p0pckw3RmTjLjf3owj4oDkkMfjV6-qqKZ5TcmNpEZ8iLnrOyU7Rih70lzRnrKOaMOe_qOfNy9y3hEiKOP0qvm8nQ_gSht96-I8hCUsU7t5WK1vW1jGdnNfxZTgRyiP7QgF2ri00SEsrQvJHfdQQnUwlzBDwfyyeeZhn_HVn_-6-fbx9uv6U3d3v9muV3ed40aXTqBizBAc9YC6Cs60cJzjWC0htQejBk00Ok28lJQpDl5y0lM0RnDJ-HWzPeeOEXb2kGr39GgjBPvbiGmykEpwe7QKhVdCYw0ngnk5IHDnidB6kL0wWLPenLMOKX4_1lXsLh7TUse3hkndc6lODd-eoQlqZlh8LAncHLKzK9FTIZTRtFI3_6HqG3EOLi7oQ_UvCt5dFFSm4M8ywTFnu_3ycMm-P7MuxZwT-r97U2JP97cx294qaU_3578Ajeid9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925783562</pqid></control><display><type>article</type><title>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>IngentaConnect Journals</source><creator>JanjiÄ, T ; Schröter, J ; Savcenko, R ; Bosch, W ; Albertella, A ; Rummel, R ; Klatt, O</creator><creatorcontrib>JanjiÄ, T ; Schröter, J ; Savcenko, R ; Bosch, W ; Albertella, A ; Rummel, R ; Klatt, O</creatorcontrib><description>With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-8-65-2012</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Ocean circulation ; Oceans</subject><ispartof>Ocean science, 2012-02, Vol.8 (1), p.65-79</ispartof><rights>COPYRIGHT 2012 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</citedby><cites>FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/925783562/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/925783562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>JanjiÄ, T</creatorcontrib><creatorcontrib>Schröter, J</creatorcontrib><creatorcontrib>Savcenko, R</creatorcontrib><creatorcontrib>Bosch, W</creatorcontrib><creatorcontrib>Albertella, A</creatorcontrib><creatorcontrib>Rummel, R</creatorcontrib><creatorcontrib>Klatt, O</creatorcontrib><title>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</title><title>Ocean science</title><description>With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)</description><subject>Analysis</subject><subject>Ocean circulation</subject><subject>Oceans</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU-LFDEQxRtRcF29-QEaPQn2mv_pHIdhHQcWF1Y9h-p0pckw3RmTjLjf3owj4oDkkMfjV6-qqKZ5TcmNpEZ8iLnrOyU7Rih70lzRnrKOaMOe_qOfNy9y3hEiKOP0qvm8nQ_gSht96-I8hCUsU7t5WK1vW1jGdnNfxZTgRyiP7QgF2ri00SEsrQvJHfdQQnUwlzBDwfyyeeZhn_HVn_-6-fbx9uv6U3d3v9muV3ed40aXTqBizBAc9YC6Cs60cJzjWC0htQejBk00Ok28lJQpDl5y0lM0RnDJ-HWzPeeOEXb2kGr39GgjBPvbiGmykEpwe7QKhVdCYw0ngnk5IHDnidB6kL0wWLPenLMOKX4_1lXsLh7TUse3hkndc6lODd-eoQlqZlh8LAncHLKzK9FTIZTRtFI3_6HqG3EOLi7oQ_UvCt5dFFSm4M8ywTFnu_3ycMm-P7MuxZwT-r97U2JP97cx294qaU_3578Ajeid9w</recordid><startdate>20120208</startdate><enddate>20120208</enddate><creator>JanjiÄ, T</creator><creator>Schröter, J</creator><creator>Savcenko, R</creator><creator>Bosch, W</creator><creator>Albertella, A</creator><creator>Rummel, R</creator><creator>Klatt, O</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20120208</creationdate><title>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</title><author>JanjiÄ, T ; Schröter, J ; Savcenko, R ; Bosch, W ; Albertella, A ; Rummel, R ; Klatt, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Ocean circulation</topic><topic>Oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JanjiÄ, T</creatorcontrib><creatorcontrib>Schröter, J</creatorcontrib><creatorcontrib>Savcenko, R</creatorcontrib><creatorcontrib>Bosch, W</creatorcontrib><creatorcontrib>Albertella, A</creatorcontrib><creatorcontrib>Rummel, R</creatorcontrib><creatorcontrib>Klatt, O</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JanjiÄ, T</au><au>Schröter, J</au><au>Savcenko, R</au><au>Bosch, W</au><au>Albertella, A</au><au>Rummel, R</au><au>Klatt, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</atitle><jtitle>Ocean science</jtitle><date>2012-02-08</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>65</spage><epage>79</epage><pages>65-79</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-8-65-2012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-0792 |
ispartof | Ocean science, 2012-02, Vol.8 (1), p.65-79 |
issn | 1812-0792 1812-0784 1812-0792 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6e4f647eed0042f5bea3cf0477b5849e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); IngentaConnect Journals |
subjects | Analysis Ocean circulation Oceans |
title | Impact of combining GRACE and GOCE gravity data on ocean circulation estimates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20combining%20GRACE%20and%20GOCE%20gravity%20data%20on%20ocean%20circulation%20estimates&rft.jtitle=Ocean%20science&rft.au=Janji%C3%84%C2%87,%20T&rft.date=2012-02-08&rft.volume=8&rft.issue=1&rft.spage=65&rft.epage=79&rft.pages=65-79&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-8-65-2012&rft_dat=%3Cgale_doaj_%3EA481446971%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=925783562&rft_id=info:pmid/&rft_galeid=A481446971&rfr_iscdi=true |