Loading…

Impact of combining GRACE and GOCE gravity data on ocean circulation estimates

With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the m...

Full description

Saved in:
Bibliographic Details
Published in:Ocean science 2012-02, Vol.8 (1), p.65-79
Main Authors: Janjić, T, Schröter, J, Savcenko, R, Bosch, W, Albertella, A, Rummel, R, Klatt, O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523
cites cdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523
container_end_page 79
container_issue 1
container_start_page 65
container_title Ocean science
container_volume 8
creator Janjić, T
Schröter, J
Savcenko, R
Bosch, W
Albertella, A
Rummel, R
Klatt, O
description With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)
doi_str_mv 10.5194/os-8-65-2012
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e4f647eed0042f5bea3cf0477b5849e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481446971</galeid><doaj_id>oai_doaj_org_article_6e4f647eed0042f5bea3cf0477b5849e</doaj_id><sourcerecordid>A481446971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</originalsourceid><addsrcrecordid>eNptkU-LFDEQxRtRcF29-QEaPQn2mv_pHIdhHQcWF1Y9h-p0pckw3RmTjLjf3owj4oDkkMfjV6-qqKZ5TcmNpEZ8iLnrOyU7Rih70lzRnrKOaMOe_qOfNy9y3hEiKOP0qvm8nQ_gSht96-I8hCUsU7t5WK1vW1jGdnNfxZTgRyiP7QgF2ri00SEsrQvJHfdQQnUwlzBDwfyyeeZhn_HVn_-6-fbx9uv6U3d3v9muV3ed40aXTqBizBAc9YC6Cs60cJzjWC0htQejBk00Ok28lJQpDl5y0lM0RnDJ-HWzPeeOEXb2kGr39GgjBPvbiGmykEpwe7QKhVdCYw0ngnk5IHDnidB6kL0wWLPenLMOKX4_1lXsLh7TUse3hkndc6lODd-eoQlqZlh8LAncHLKzK9FTIZTRtFI3_6HqG3EOLi7oQ_UvCt5dFFSm4M8ywTFnu_3ycMm-P7MuxZwT-r97U2JP97cx294qaU_3578Ajeid9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925783562</pqid></control><display><type>article</type><title>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>IngentaConnect Journals</source><creator>Janjić, T ; Schröter, J ; Savcenko, R ; Bosch, W ; Albertella, A ; Rummel, R ; Klatt, O</creator><creatorcontrib>Janjić, T ; Schröter, J ; Savcenko, R ; Bosch, W ; Albertella, A ; Rummel, R ; Klatt, O</creatorcontrib><description>With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-8-65-2012</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Ocean circulation ; Oceans</subject><ispartof>Ocean science, 2012-02, Vol.8 (1), p.65-79</ispartof><rights>COPYRIGHT 2012 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</citedby><cites>FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/925783562/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/925783562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Janjić, T</creatorcontrib><creatorcontrib>Schröter, J</creatorcontrib><creatorcontrib>Savcenko, R</creatorcontrib><creatorcontrib>Bosch, W</creatorcontrib><creatorcontrib>Albertella, A</creatorcontrib><creatorcontrib>Rummel, R</creatorcontrib><creatorcontrib>Klatt, O</creatorcontrib><title>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</title><title>Ocean science</title><description>With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)</description><subject>Analysis</subject><subject>Ocean circulation</subject><subject>Oceans</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU-LFDEQxRtRcF29-QEaPQn2mv_pHIdhHQcWF1Y9h-p0pckw3RmTjLjf3owj4oDkkMfjV6-qqKZ5TcmNpEZ8iLnrOyU7Rih70lzRnrKOaMOe_qOfNy9y3hEiKOP0qvm8nQ_gSht96-I8hCUsU7t5WK1vW1jGdnNfxZTgRyiP7QgF2ri00SEsrQvJHfdQQnUwlzBDwfyyeeZhn_HVn_-6-fbx9uv6U3d3v9muV3ed40aXTqBizBAc9YC6Cs60cJzjWC0htQejBk00Ok28lJQpDl5y0lM0RnDJ-HWzPeeOEXb2kGr39GgjBPvbiGmykEpwe7QKhVdCYw0ngnk5IHDnidB6kL0wWLPenLMOKX4_1lXsLh7TUse3hkndc6lODd-eoQlqZlh8LAncHLKzK9FTIZTRtFI3_6HqG3EOLi7oQ_UvCt5dFFSm4M8ywTFnu_3ycMm-P7MuxZwT-r97U2JP97cx294qaU_3578Ajeid9w</recordid><startdate>20120208</startdate><enddate>20120208</enddate><creator>Janjić, T</creator><creator>Schröter, J</creator><creator>Savcenko, R</creator><creator>Bosch, W</creator><creator>Albertella, A</creator><creator>Rummel, R</creator><creator>Klatt, O</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20120208</creationdate><title>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</title><author>Janjić, T ; Schröter, J ; Savcenko, R ; Bosch, W ; Albertella, A ; Rummel, R ; Klatt, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Ocean circulation</topic><topic>Oceans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janjić, T</creatorcontrib><creatorcontrib>Schröter, J</creatorcontrib><creatorcontrib>Savcenko, R</creatorcontrib><creatorcontrib>Bosch, W</creatorcontrib><creatorcontrib>Albertella, A</creatorcontrib><creatorcontrib>Rummel, R</creatorcontrib><creatorcontrib>Klatt, O</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janjić, T</au><au>Schröter, J</au><au>Savcenko, R</au><au>Bosch, W</au><au>Albertella, A</au><au>Rummel, R</au><au>Klatt, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of combining GRACE and GOCE gravity data on ocean circulation estimates</atitle><jtitle>Ocean science</jtitle><date>2012-02-08</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>65</spage><epage>79</epage><pages>65-79</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-8-65-2012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-0792
ispartof Ocean science, 2012-02, Vol.8 (1), p.65-79
issn 1812-0792
1812-0784
1812-0792
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6e4f647eed0042f5bea3cf0477b5849e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); IngentaConnect Journals
subjects Analysis
Ocean circulation
Oceans
title Impact of combining GRACE and GOCE gravity data on ocean circulation estimates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20combining%20GRACE%20and%20GOCE%20gravity%20data%20on%20ocean%20circulation%20estimates&rft.jtitle=Ocean%20science&rft.au=Janji%C3%84%C2%87,%20T&rft.date=2012-02-08&rft.volume=8&rft.issue=1&rft.spage=65&rft.epage=79&rft.pages=65-79&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-8-65-2012&rft_dat=%3Cgale_doaj_%3EA481446971%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-4e62290ed7be72903274c33ed0ed457fa96b707ec70f551263af53081e9943523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=925783562&rft_id=info:pmid/&rft_galeid=A481446971&rfr_iscdi=true