Loading…

Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere

Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the g...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2012-05, Vol.12 (10), p.4387-4398
Main Authors: Saunders, R. W, Dhomse, S, Tian, W. S, Chipperfield, M. P, Plane, J. M. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53
cites cdi_FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53
container_end_page 4398
container_issue 10
container_start_page 4387
container_title Atmospheric chemistry and physics
container_volume 12
creator Saunders, R. W
Dhomse, S
Tian, W. S
Chipperfield, M. P
Plane, J. M. C
description Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30–75 %) solutions over a temperature range of 223–295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm−3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5–1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 tonnes per day. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.
doi_str_mv 10.5194/acp-12-4387-2012
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e6906b0575743d8b821a5b71ba6a4d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481533464</galeid><doaj_id>oai_doaj_org_article_6e6906b0575743d8b821a5b71ba6a4d7</doaj_id><sourcerecordid>A481533464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53</originalsourceid><addsrcrecordid>eNptkk2L1TAUhosoOF7duwy4UBcdc5KmSZfDMOqFAcEPcBfSfNzm2jY1SVH_val3kLliskg4ec57cg5vVT0HfMmga94ovdRA6oYKXhMM5EF1Aa3ANaekeXjv_rh6ktIRY8IwNBfV1_2cbVQ6-zAnFByabLYheo3SFL5ZtKiYvR5tQj98HlBax2VYt2elvUF-Rnmw6KZAw8uEUo4qh7QMNtqn1SOnxmSf3Z276svbm8_X7-vbD-_211e3tWZAc921vYGGcWHatseO9VAWL39z1PYYeAdUY6O5cx0YI8C6XrVMEArCUK0Z3VX7k64J6iiX6CcVf8mgvPwTCPEg71qQrW07XKowznhDjegFAcV6DkVSNYYXrVcnrSWG76tNWU4-aTuOarZhTRIwEdvgSvauevEPegxrnEunhYKOECrYPeqgSn0_u1AmpDdRedUIYJQ27UZd_ocq29jJ6zBb50v8LOH1WUJhsv2ZD2pNSe4_fTxn8YnVMaQUrfs7I8Byc44szpFA5OYcuTmH_galzrMa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019223854</pqid></control><display><type>article</type><title>Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>Alma/SFX Local Collection</source><creator>Saunders, R. W ; Dhomse, S ; Tian, W. S ; Chipperfield, M. P ; Plane, J. M. C</creator><creatorcontrib>Saunders, R. W ; Dhomse, S ; Tian, W. S ; Chipperfield, M. P ; Plane, J. M. C</creatorcontrib><description>Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30–75 %) solutions over a temperature range of 223–295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm−3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5–1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 tonnes per day. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-12-4387-2012</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Measuring instruments ; Mesosphere ; Middle atmosphere ; Silicon compounds ; Sulfuric acid</subject><ispartof>Atmospheric chemistry and physics, 2012-05, Vol.12 (10), p.4387-4398</ispartof><rights>COPYRIGHT 2012 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53</citedby><cites>FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1019223854/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1019223854?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,25751,27922,27923,37010,37011,44588,74896</link.rule.ids></links><search><creatorcontrib>Saunders, R. W</creatorcontrib><creatorcontrib>Dhomse, S</creatorcontrib><creatorcontrib>Tian, W. S</creatorcontrib><creatorcontrib>Chipperfield, M. P</creatorcontrib><creatorcontrib>Plane, J. M. C</creatorcontrib><title>Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere</title><title>Atmospheric chemistry and physics</title><description>Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30–75 %) solutions over a temperature range of 223–295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm−3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5–1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 tonnes per day. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.</description><subject>Analysis</subject><subject>Measuring instruments</subject><subject>Mesosphere</subject><subject>Middle atmosphere</subject><subject>Silicon compounds</subject><subject>Sulfuric acid</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2L1TAUhosoOF7duwy4UBcdc5KmSZfDMOqFAcEPcBfSfNzm2jY1SVH_val3kLliskg4ec57cg5vVT0HfMmga94ovdRA6oYKXhMM5EF1Aa3ANaekeXjv_rh6ktIRY8IwNBfV1_2cbVQ6-zAnFByabLYheo3SFL5ZtKiYvR5tQj98HlBax2VYt2elvUF-Rnmw6KZAw8uEUo4qh7QMNtqn1SOnxmSf3Z276svbm8_X7-vbD-_211e3tWZAc921vYGGcWHatseO9VAWL39z1PYYeAdUY6O5cx0YI8C6XrVMEArCUK0Z3VX7k64J6iiX6CcVf8mgvPwTCPEg71qQrW07XKowznhDjegFAcV6DkVSNYYXrVcnrSWG76tNWU4-aTuOarZhTRIwEdvgSvauevEPegxrnEunhYKOECrYPeqgSn0_u1AmpDdRedUIYJQ27UZd_ocq29jJ6zBb50v8LOH1WUJhsv2ZD2pNSe4_fTxn8YnVMaQUrfs7I8Byc44szpFA5OYcuTmH_galzrMa</recordid><startdate>20120516</startdate><enddate>20120516</enddate><creator>Saunders, R. W</creator><creator>Dhomse, S</creator><creator>Tian, W. S</creator><creator>Chipperfield, M. P</creator><creator>Plane, J. M. C</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7TV</scope><scope>DOA</scope></search><sort><creationdate>20120516</creationdate><title>Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere</title><author>Saunders, R. W ; Dhomse, S ; Tian, W. S ; Chipperfield, M. P ; Plane, J. M. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Measuring instruments</topic><topic>Mesosphere</topic><topic>Middle atmosphere</topic><topic>Silicon compounds</topic><topic>Sulfuric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, R. W</creatorcontrib><creatorcontrib>Dhomse, S</creatorcontrib><creatorcontrib>Tian, W. S</creatorcontrib><creatorcontrib>Chipperfield, M. P</creatorcontrib><creatorcontrib>Plane, J. M. C</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Pollution Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, R. W</au><au>Dhomse, S</au><au>Tian, W. S</au><au>Chipperfield, M. P</au><au>Plane, J. M. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2012-05-16</date><risdate>2012</risdate><volume>12</volume><issue>10</issue><spage>4387</spage><epage>4398</epage><pages>4387-4398</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30–75 %) solutions over a temperature range of 223–295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm−3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5–1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 tonnes per day. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-12-4387-2012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2012-05, Vol.12 (10), p.4387-4398
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6e6906b0575743d8b821a5b71ba6a4d7
source Open Access: DOAJ - Directory of Open Access Journals; Publicly Available Content (ProQuest); Alma/SFX Local Collection
subjects Analysis
Measuring instruments
Mesosphere
Middle atmosphere
Silicon compounds
Sulfuric acid
title Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20meteoric%20smoke%20particles%20with%20sulphuric%20acid%20in%20the%20Earth's%20stratosphere&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Saunders,%20R.%20W&rft.date=2012-05-16&rft.volume=12&rft.issue=10&rft.spage=4387&rft.epage=4398&rft.pages=4387-4398&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-12-4387-2012&rft_dat=%3Cgale_doaj_%3EA481533464%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-96bd14578d66b0f5b11117501f3eb017913c0dc7ff91dd81efba6582318d3cc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019223854&rft_id=info:pmid/&rft_galeid=A481533464&rfr_iscdi=true