Loading…

Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems

In this article, a comparative analysis is made between three statistical methods (Taguchi's Orthogonal Array Testing method, Monte Carlo and Two-Point method) by integrating the uncertainty of primary sources of renewable generation in systems of electric power. The modeling of the Institute o...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports 2020-02, Vol.6 (3), p.88-104
Main Authors: Beltrán, Juan Carlos, Aristizábal, Andrés Julián, López, Alejandra, Castaneda, Mónica, Zapata, Sebastián, Ivanova, Yulia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3
cites cdi_FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3
container_end_page 104
container_issue 3
container_start_page 88
container_title Energy reports
container_volume 6
creator Beltrán, Juan Carlos
Aristizábal, Andrés Julián
López, Alejandra
Castaneda, Mónica
Zapata, Sebastián
Ivanova, Yulia
description In this article, a comparative analysis is made between three statistical methods (Taguchi's Orthogonal Array Testing method, Monte Carlo and Two-Point method) by integrating the uncertainty of primary sources of renewable generation in systems of electric power. The modeling of the Institute of Electrical and Electronics Engineers test system of 13 nodes is made by integrating the distributed generation with two different sources: wind and photovoltaic. For the simulation of wind power generation, the wind speed data is from El Cabo de la Vela in the Guajira department in Colombia and for the simulation of solar power generation, the solar radiation data is from Bogota city in Colombia. Once the system of 13 nodes is modeled and incorporated to the variability of primary resource and the load in each case; the load flow can be made by using the Matpower tool in Matlab for each one of the statistical methods proposed. The voltage, power generated, and power demanded data is recovered for each method to create comparison charts, establish the advantages, and disadvantages of each one in the analysis of the distribution of power systems with distributed generation. The main results are: the Taguchi's Orthogonal Array Testing method improves its behavior if the number of levels is increased for each variable; more iterations in the Montecarlo method produce a greater precision of the probabilities; and the two-point method is a combination between the benefits of the deterministic and the probabilistic.
doi_str_mv 10.1016/j.egyr.2019.10.025
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6e69d61f8fc846fc948ae10ff2e2a255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352484719308534</els_id><doaj_id>oai_doaj_org_article_6e69d61f8fc846fc948ae10ff2e2a255</doaj_id><sourcerecordid>S2352484719308534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3</originalsourceid><addsrcrecordid>eNp9UctKAzEUHUTBUvsDgpAfaE0ymUwG3EjxUSi40XXIJDdtSmdSkljpxm830xZx5eqG87q5nKK4JXhGMOH3mxmsDmFGMWkyMMO0uihGtKzolAlWX_55XxeTGDcYZyXFjJej4nvuu50KKrk9INWr7SG6iLxFBhKEzvUuJqczY9Au-Fa1bntCOkhrbyKyPqC0BuT6BKshx_dHe1YF134mMGgFPZwZ16Od_4KA4iEm6OJNcWXVNsLkPMfFx_PT-_x1unx7Wcwfl1PNRJOmVtjGKIwrpo01vLXYqppA3XKoKqM1p7qqBc9cTVsqsFGCEs6wbVpbMmHLcbE45RqvNnIXXKfCQXrl5BHwYSVVyGdtQXLgjeEkr9SCcasbJhQQbC0FqmhV5Sx6ytLBxxjA_uYRLIdC5EYOhcihkAHLhWTTw8kE-cq9gyCjdtBrMC6ATvkb7n_73dmufa5EDiMmn0WsbERZ_gCr9qLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems</title><source>ScienceDirect Journals</source><creator>Beltrán, Juan Carlos ; Aristizábal, Andrés Julián ; López, Alejandra ; Castaneda, Mónica ; Zapata, Sebastián ; Ivanova, Yulia</creator><creatorcontrib>Beltrán, Juan Carlos ; Aristizábal, Andrés Julián ; López, Alejandra ; Castaneda, Mónica ; Zapata, Sebastián ; Ivanova, Yulia</creatorcontrib><description>In this article, a comparative analysis is made between three statistical methods (Taguchi's Orthogonal Array Testing method, Monte Carlo and Two-Point method) by integrating the uncertainty of primary sources of renewable generation in systems of electric power. The modeling of the Institute of Electrical and Electronics Engineers test system of 13 nodes is made by integrating the distributed generation with two different sources: wind and photovoltaic. For the simulation of wind power generation, the wind speed data is from El Cabo de la Vela in the Guajira department in Colombia and for the simulation of solar power generation, the solar radiation data is from Bogota city in Colombia. Once the system of 13 nodes is modeled and incorporated to the variability of primary resource and the load in each case; the load flow can be made by using the Matpower tool in Matlab for each one of the statistical methods proposed. The voltage, power generated, and power demanded data is recovered for each method to create comparison charts, establish the advantages, and disadvantages of each one in the analysis of the distribution of power systems with distributed generation. The main results are: the Taguchi's Orthogonal Array Testing method improves its behavior if the number of levels is increased for each variable; more iterations in the Montecarlo method produce a greater precision of the probabilities; and the two-point method is a combination between the benefits of the deterministic and the probabilistic.</description><identifier>ISSN: 2352-4847</identifier><identifier>EISSN: 2352-4847</identifier><identifier>DOI: 10.1016/j.egyr.2019.10.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Deterministic methods ; Distributed generation ; Probabilistic methods ; Solar power ; Wind power</subject><ispartof>Energy reports, 2020-02, Vol.6 (3), p.88-104</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3</citedby><cites>FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352484719308534$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Beltrán, Juan Carlos</creatorcontrib><creatorcontrib>Aristizábal, Andrés Julián</creatorcontrib><creatorcontrib>López, Alejandra</creatorcontrib><creatorcontrib>Castaneda, Mónica</creatorcontrib><creatorcontrib>Zapata, Sebastián</creatorcontrib><creatorcontrib>Ivanova, Yulia</creatorcontrib><title>Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems</title><title>Energy reports</title><description>In this article, a comparative analysis is made between three statistical methods (Taguchi's Orthogonal Array Testing method, Monte Carlo and Two-Point method) by integrating the uncertainty of primary sources of renewable generation in systems of electric power. The modeling of the Institute of Electrical and Electronics Engineers test system of 13 nodes is made by integrating the distributed generation with two different sources: wind and photovoltaic. For the simulation of wind power generation, the wind speed data is from El Cabo de la Vela in the Guajira department in Colombia and for the simulation of solar power generation, the solar radiation data is from Bogota city in Colombia. Once the system of 13 nodes is modeled and incorporated to the variability of primary resource and the load in each case; the load flow can be made by using the Matpower tool in Matlab for each one of the statistical methods proposed. The voltage, power generated, and power demanded data is recovered for each method to create comparison charts, establish the advantages, and disadvantages of each one in the analysis of the distribution of power systems with distributed generation. The main results are: the Taguchi's Orthogonal Array Testing method improves its behavior if the number of levels is increased for each variable; more iterations in the Montecarlo method produce a greater precision of the probabilities; and the two-point method is a combination between the benefits of the deterministic and the probabilistic.</description><subject>Deterministic methods</subject><subject>Distributed generation</subject><subject>Probabilistic methods</subject><subject>Solar power</subject><subject>Wind power</subject><issn>2352-4847</issn><issn>2352-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctKAzEUHUTBUvsDgpAfaE0ymUwG3EjxUSi40XXIJDdtSmdSkljpxm830xZx5eqG87q5nKK4JXhGMOH3mxmsDmFGMWkyMMO0uihGtKzolAlWX_55XxeTGDcYZyXFjJej4nvuu50KKrk9INWr7SG6iLxFBhKEzvUuJqczY9Au-Fa1bntCOkhrbyKyPqC0BuT6BKshx_dHe1YF134mMGgFPZwZ16Od_4KA4iEm6OJNcWXVNsLkPMfFx_PT-_x1unx7Wcwfl1PNRJOmVtjGKIwrpo01vLXYqppA3XKoKqM1p7qqBc9cTVsqsFGCEs6wbVpbMmHLcbE45RqvNnIXXKfCQXrl5BHwYSVVyGdtQXLgjeEkr9SCcasbJhQQbC0FqmhV5Sx6ytLBxxjA_uYRLIdC5EYOhcihkAHLhWTTw8kE-cq9gyCjdtBrMC6ATvkb7n_73dmufa5EDiMmn0WsbERZ_gCr9qLQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Beltrán, Juan Carlos</creator><creator>Aristizábal, Andrés Julián</creator><creator>López, Alejandra</creator><creator>Castaneda, Mónica</creator><creator>Zapata, Sebastián</creator><creator>Ivanova, Yulia</creator><general>Elsevier</general><general>Elsevier Ltd</general><scope>OT2</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200201</creationdate><title>Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems</title><author>Beltrán, Juan Carlos ; Aristizábal, Andrés Julián ; López, Alejandra ; Castaneda, Mónica ; Zapata, Sebastián ; Ivanova, Yulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deterministic methods</topic><topic>Distributed generation</topic><topic>Probabilistic methods</topic><topic>Solar power</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán, Juan Carlos</creatorcontrib><creatorcontrib>Aristizábal, Andrés Julián</creatorcontrib><creatorcontrib>López, Alejandra</creatorcontrib><creatorcontrib>Castaneda, Mónica</creatorcontrib><creatorcontrib>Zapata, Sebastián</creatorcontrib><creatorcontrib>Ivanova, Yulia</creatorcontrib><collection>EconStor</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energy reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán, Juan Carlos</au><au>Aristizábal, Andrés Julián</au><au>López, Alejandra</au><au>Castaneda, Mónica</au><au>Zapata, Sebastián</au><au>Ivanova, Yulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems</atitle><jtitle>Energy reports</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><spage>88</spage><epage>104</epage><pages>88-104</pages><issn>2352-4847</issn><eissn>2352-4847</eissn><abstract>In this article, a comparative analysis is made between three statistical methods (Taguchi's Orthogonal Array Testing method, Monte Carlo and Two-Point method) by integrating the uncertainty of primary sources of renewable generation in systems of electric power. The modeling of the Institute of Electrical and Electronics Engineers test system of 13 nodes is made by integrating the distributed generation with two different sources: wind and photovoltaic. For the simulation of wind power generation, the wind speed data is from El Cabo de la Vela in the Guajira department in Colombia and for the simulation of solar power generation, the solar radiation data is from Bogota city in Colombia. Once the system of 13 nodes is modeled and incorporated to the variability of primary resource and the load in each case; the load flow can be made by using the Matpower tool in Matlab for each one of the statistical methods proposed. The voltage, power generated, and power demanded data is recovered for each method to create comparison charts, establish the advantages, and disadvantages of each one in the analysis of the distribution of power systems with distributed generation. The main results are: the Taguchi's Orthogonal Array Testing method improves its behavior if the number of levels is increased for each variable; more iterations in the Montecarlo method produce a greater precision of the probabilities; and the two-point method is a combination between the benefits of the deterministic and the probabilistic.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.egyr.2019.10.025</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-4847
ispartof Energy reports, 2020-02, Vol.6 (3), p.88-104
issn 2352-4847
2352-4847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6e69d61f8fc846fc948ae10ff2e2a255
source ScienceDirect Journals
subjects Deterministic methods
Distributed generation
Probabilistic methods
Solar power
Wind power
title Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20deterministic%20and%20probabilistic%20methods%20for%20the%20integration%20of%20distributed%20generation%20in%20power%20systems&rft.jtitle=Energy%20reports&rft.au=Beltr%C3%A1n,%20Juan%20Carlos&rft.date=2020-02-01&rft.volume=6&rft.issue=3&rft.spage=88&rft.epage=104&rft.pages=88-104&rft.issn=2352-4847&rft.eissn=2352-4847&rft_id=info:doi/10.1016/j.egyr.2019.10.025&rft_dat=%3Celsevier_doaj_%3ES2352484719308534%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-f8f9da0054cdfd6bf0fa71e7b6e55dcc62c5786dfd72b280da821640f9bf348f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true