Loading…

A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy

Motivated by the call of the International Maritime Organization to meet the emission targets of 2030, this study considers two important practical aspects of quay crane scheduling: efficiency and energy consumption. More precisely, we introduce the bi-objective quay crane scheduling problem where t...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-12, Vol.10 (24), p.4705
Main Authors: Li, Hongming, Li, Xintao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivated by the call of the International Maritime Organization to meet the emission targets of 2030, this study considers two important practical aspects of quay crane scheduling: efficiency and energy consumption. More precisely, we introduce the bi-objective quay crane scheduling problem where the objective is to minimize the vessel’s completion time and the crane’s energy consumption. This is done by formulating a bi-objective mixed-integer programming model. A branch-and-bound algorithm was developed as the exact solution approach to find the full set of Pareto-optimal solutions. We consider (i) various lower bounds for both objectives, (ii) specific upper bounds, (iii) additional branching criteria, and (iv) fathoming criteria to detect Pareto-optimal solutions. Numerical experiments on benchmark instances show that the branch-and-bound algorithm can efficiently solve small- and medium-sized problems.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10244705