Loading…
The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage
Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these...
Saved in:
Published in: | Marine drugs 2018-04, Vol.16 (4), p.135 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3 |
container_end_page | |
container_issue | 4 |
container_start_page | 135 |
container_title | Marine drugs |
container_volume | 16 |
creator | Presa, Fernando Bastos Marques, Maxsuell Lucas Mendes Viana, Rony Lucas Silva Nobre, Leonardo Thiago Duarte Barreto Costa, Leandro Silva Rocha, Hugo Alexandre Oliveira |
description | Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed
(UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties. |
doi_str_mv | 10.3390/md16040135 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f0f66afa4f14f37b94f3b5b2f0a962e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f0f66afa4f14f37b94f3b5b2f0a962e</doaj_id><sourcerecordid>2028954696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRbK2--AdIwBcRTvNrk82LUM5aC4UW2z6H2WRyt8fu5kx2a_vfG3u1tr4kYfLlm5kwVfWW0U9CGPp58ExRSZmon1X7TCm6KGH9_NF5r3qV84ZSUTdGvqz2uFFaM073q5vLNZLzFCd0U3eN5EfskcRALuY-wISenMf-NoNza0idx0xCigM5TogjuUD4hQW58uU5kNBDi30_D6QbybKcMjm62cZciCmSs5vOw12KrzDACl9XLwL0Gd_c7wfV1bejy-X3xenZ8cny8HThpObTQmmJAZxxwLgIQpcOFFW-QVY3TJcGQXvggRoQrfN1KZQ7QRsdWtpQaVpxUJ3svD7Cxm5TN0C6tRE6exeIaWUhTZ3r0apAQxEGkIHJkqs1ZW3rtujBKI7F9WXn2s7tgN7hOCXon0if3ozd2q7ita0NF5LzIvhwL0jx54x5skOXXfkqGDHO2XLKG1NLZVRB3_-HbuKcxvJVljPa1KputCzUxx3lUsw5YXgohlH7Zzjsv-Eo8LvH5T-gf6dB_AaCxbWO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108565874</pqid></control><display><type>article</type><title>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Presa, Fernando Bastos ; Marques, Maxsuell Lucas Mendes ; Viana, Rony Lucas Silva ; Nobre, Leonardo Thiago Duarte Barreto ; Costa, Leandro Silva ; Rocha, Hugo Alexandre Oliveira</creator><creatorcontrib>Presa, Fernando Bastos ; Marques, Maxsuell Lucas Mendes ; Viana, Rony Lucas Silva ; Nobre, Leonardo Thiago Duarte Barreto ; Costa, Leandro Silva ; Rocha, Hugo Alexandre Oliveira</creatorcontrib><description>Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed
(UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.</description><identifier>ISSN: 1660-3397</identifier><identifier>EISSN: 1660-3397</identifier><identifier>DOI: 10.3390/md16040135</identifier><identifier>PMID: 29677120</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3T3 Cells ; 3T3 fibroblasts ; Acetone ; Algae ; Animals ; Antioxidants ; Antioxidants - metabolism ; Apoptosis ; Apoptosis - drug effects ; Ascorbic acid ; Biochemical analysis ; Capacity ; Caspase ; Caspase 3 - metabolism ; Caspase 9 - metabolism ; Caspase-3 ; Caspase-9 ; Cell Line ; Cell Survival - drug effects ; Cells ; Chelation ; Chlorophyta - chemistry ; Copper ; Copper sulfate ; Damage ; Detection ; Exposure ; Fibroblasts ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Galactans ; Glutathione ; green seaweed ; Iron ; Iron sulfates ; Lipid peroxidation ; Lipid Peroxidation - drug effects ; Lipids ; Malondialdehyde ; Malondialdehyde - metabolism ; Mice ; Oxidation ; Oxidation-Reduction - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Peroxidation ; Polysaccharides ; Polysaccharides - pharmacology ; Protective Agents - pharmacology ; Proteolysis ; Saccharides ; Salts ; Seaweed - chemistry ; Seaweeds ; sulfated galactan ; Sulfates - pharmacology ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Udotea flabellum</subject><ispartof>Marine drugs, 2018-04, Vol.16 (4), p.135</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</citedby><cites>FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</cites><orcidid>0000-0003-2252-1221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108565874/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108565874?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29677120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Presa, Fernando Bastos</creatorcontrib><creatorcontrib>Marques, Maxsuell Lucas Mendes</creatorcontrib><creatorcontrib>Viana, Rony Lucas Silva</creatorcontrib><creatorcontrib>Nobre, Leonardo Thiago Duarte Barreto</creatorcontrib><creatorcontrib>Costa, Leandro Silva</creatorcontrib><creatorcontrib>Rocha, Hugo Alexandre Oliveira</creatorcontrib><title>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</title><title>Marine drugs</title><addtitle>Mar Drugs</addtitle><description>Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed
(UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.</description><subject>3T3 Cells</subject><subject>3T3 fibroblasts</subject><subject>Acetone</subject><subject>Algae</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Ascorbic acid</subject><subject>Biochemical analysis</subject><subject>Capacity</subject><subject>Caspase</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 9 - metabolism</subject><subject>Caspase-3</subject><subject>Caspase-9</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Cells</subject><subject>Chelation</subject><subject>Chlorophyta - chemistry</subject><subject>Copper</subject><subject>Copper sulfate</subject><subject>Damage</subject><subject>Detection</subject><subject>Exposure</subject><subject>Fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Galactans</subject><subject>Glutathione</subject><subject>green seaweed</subject><subject>Iron</subject><subject>Iron sulfates</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipids</subject><subject>Malondialdehyde</subject><subject>Malondialdehyde - metabolism</subject><subject>Mice</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Peroxidation</subject><subject>Polysaccharides</subject><subject>Polysaccharides - pharmacology</subject><subject>Protective Agents - pharmacology</subject><subject>Proteolysis</subject><subject>Saccharides</subject><subject>Salts</subject><subject>Seaweed - chemistry</subject><subject>Seaweeds</subject><subject>sulfated galactan</subject><subject>Sulfates - pharmacology</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Udotea flabellum</subject><issn>1660-3397</issn><issn>1660-3397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRbK2--AdIwBcRTvNrk82LUM5aC4UW2z6H2WRyt8fu5kx2a_vfG3u1tr4kYfLlm5kwVfWW0U9CGPp58ExRSZmon1X7TCm6KGH9_NF5r3qV84ZSUTdGvqz2uFFaM073q5vLNZLzFCd0U3eN5EfskcRALuY-wISenMf-NoNza0idx0xCigM5TogjuUD4hQW58uU5kNBDi30_D6QbybKcMjm62cZciCmSs5vOw12KrzDACl9XLwL0Gd_c7wfV1bejy-X3xenZ8cny8HThpObTQmmJAZxxwLgIQpcOFFW-QVY3TJcGQXvggRoQrfN1KZQ7QRsdWtpQaVpxUJ3svD7Cxm5TN0C6tRE6exeIaWUhTZ3r0apAQxEGkIHJkqs1ZW3rtujBKI7F9WXn2s7tgN7hOCXon0if3ozd2q7ita0NF5LzIvhwL0jx54x5skOXXfkqGDHO2XLKG1NLZVRB3_-HbuKcxvJVljPa1KputCzUxx3lUsw5YXgohlH7Zzjsv-Eo8LvH5T-gf6dB_AaCxbWO</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Presa, Fernando Bastos</creator><creator>Marques, Maxsuell Lucas Mendes</creator><creator>Viana, Rony Lucas Silva</creator><creator>Nobre, Leonardo Thiago Duarte Barreto</creator><creator>Costa, Leandro Silva</creator><creator>Rocha, Hugo Alexandre Oliveira</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2252-1221</orcidid></search><sort><creationdate>20180420</creationdate><title>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</title><author>Presa, Fernando Bastos ; Marques, Maxsuell Lucas Mendes ; Viana, Rony Lucas Silva ; Nobre, Leonardo Thiago Duarte Barreto ; Costa, Leandro Silva ; Rocha, Hugo Alexandre Oliveira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3T3 Cells</topic><topic>3T3 fibroblasts</topic><topic>Acetone</topic><topic>Algae</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Ascorbic acid</topic><topic>Biochemical analysis</topic><topic>Capacity</topic><topic>Caspase</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 9 - metabolism</topic><topic>Caspase-3</topic><topic>Caspase-9</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Cells</topic><topic>Chelation</topic><topic>Chlorophyta - chemistry</topic><topic>Copper</topic><topic>Copper sulfate</topic><topic>Damage</topic><topic>Detection</topic><topic>Exposure</topic><topic>Fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Galactans</topic><topic>Glutathione</topic><topic>green seaweed</topic><topic>Iron</topic><topic>Iron sulfates</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipids</topic><topic>Malondialdehyde</topic><topic>Malondialdehyde - metabolism</topic><topic>Mice</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Peroxidation</topic><topic>Polysaccharides</topic><topic>Polysaccharides - pharmacology</topic><topic>Protective Agents - pharmacology</topic><topic>Proteolysis</topic><topic>Saccharides</topic><topic>Salts</topic><topic>Seaweed - chemistry</topic><topic>Seaweeds</topic><topic>sulfated galactan</topic><topic>Sulfates - pharmacology</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Udotea flabellum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Presa, Fernando Bastos</creatorcontrib><creatorcontrib>Marques, Maxsuell Lucas Mendes</creatorcontrib><creatorcontrib>Viana, Rony Lucas Silva</creatorcontrib><creatorcontrib>Nobre, Leonardo Thiago Duarte Barreto</creatorcontrib><creatorcontrib>Costa, Leandro Silva</creatorcontrib><creatorcontrib>Rocha, Hugo Alexandre Oliveira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Marine drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Presa, Fernando Bastos</au><au>Marques, Maxsuell Lucas Mendes</au><au>Viana, Rony Lucas Silva</au><au>Nobre, Leonardo Thiago Duarte Barreto</au><au>Costa, Leandro Silva</au><au>Rocha, Hugo Alexandre Oliveira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</atitle><jtitle>Marine drugs</jtitle><addtitle>Mar Drugs</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>16</volume><issue>4</issue><spage>135</spage><pages>135-</pages><issn>1660-3397</issn><eissn>1660-3397</eissn><abstract>Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed
(UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29677120</pmid><doi>10.3390/md16040135</doi><orcidid>https://orcid.org/0000-0003-2252-1221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-3397 |
ispartof | Marine drugs, 2018-04, Vol.16 (4), p.135 |
issn | 1660-3397 1660-3397 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6f0f66afa4f14f37b94f3b5b2f0a962e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | 3T3 Cells 3T3 fibroblasts Acetone Algae Animals Antioxidants Antioxidants - metabolism Apoptosis Apoptosis - drug effects Ascorbic acid Biochemical analysis Capacity Caspase Caspase 3 - metabolism Caspase 9 - metabolism Caspase-3 Caspase-9 Cell Line Cell Survival - drug effects Cells Chelation Chlorophyta - chemistry Copper Copper sulfate Damage Detection Exposure Fibroblasts Fibroblasts - drug effects Fibroblasts - metabolism Galactans Glutathione green seaweed Iron Iron sulfates Lipid peroxidation Lipid Peroxidation - drug effects Lipids Malondialdehyde Malondialdehyde - metabolism Mice Oxidation Oxidation-Reduction - drug effects Oxidative stress Oxidative Stress - drug effects Peroxidation Polysaccharides Polysaccharides - pharmacology Protective Agents - pharmacology Proteolysis Saccharides Salts Seaweed - chemistry Seaweeds sulfated galactan Sulfates - pharmacology Superoxide dismutase Superoxide Dismutase - metabolism Udotea flabellum |
title | The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Protective%20Role%20of%20Sulfated%20Polysaccharides%20from%20Green%20Seaweed%20Udotea%20flabellum%20in%20Cells%20Exposed%20to%20Oxidative%20Damage&rft.jtitle=Marine%20drugs&rft.au=Presa,%20Fernando%20Bastos&rft.date=2018-04-20&rft.volume=16&rft.issue=4&rft.spage=135&rft.pages=135-&rft.issn=1660-3397&rft.eissn=1660-3397&rft_id=info:doi/10.3390/md16040135&rft_dat=%3Cproquest_doaj_%3E2028954696%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108565874&rft_id=info:pmid/29677120&rfr_iscdi=true |