Loading…

The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage

Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these...

Full description

Saved in:
Bibliographic Details
Published in:Marine drugs 2018-04, Vol.16 (4), p.135
Main Authors: Presa, Fernando Bastos, Marques, Maxsuell Lucas Mendes, Viana, Rony Lucas Silva, Nobre, Leonardo Thiago Duarte Barreto, Costa, Leandro Silva, Rocha, Hugo Alexandre Oliveira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3
cites cdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3
container_end_page
container_issue 4
container_start_page 135
container_title Marine drugs
container_volume 16
creator Presa, Fernando Bastos
Marques, Maxsuell Lucas Mendes
Viana, Rony Lucas Silva
Nobre, Leonardo Thiago Duarte Barreto
Costa, Leandro Silva
Rocha, Hugo Alexandre Oliveira
description Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.
doi_str_mv 10.3390/md16040135
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f0f66afa4f14f37b94f3b5b2f0a962e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f0f66afa4f14f37b94f3b5b2f0a962e</doaj_id><sourcerecordid>2028954696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRbK2--AdIwBcRTvNrk82LUM5aC4UW2z6H2WRyt8fu5kx2a_vfG3u1tr4kYfLlm5kwVfWW0U9CGPp58ExRSZmon1X7TCm6KGH9_NF5r3qV84ZSUTdGvqz2uFFaM073q5vLNZLzFCd0U3eN5EfskcRALuY-wISenMf-NoNza0idx0xCigM5TogjuUD4hQW58uU5kNBDi30_D6QbybKcMjm62cZciCmSs5vOw12KrzDACl9XLwL0Gd_c7wfV1bejy-X3xenZ8cny8HThpObTQmmJAZxxwLgIQpcOFFW-QVY3TJcGQXvggRoQrfN1KZQ7QRsdWtpQaVpxUJ3svD7Cxm5TN0C6tRE6exeIaWUhTZ3r0apAQxEGkIHJkqs1ZW3rtujBKI7F9WXn2s7tgN7hOCXon0if3ozd2q7ita0NF5LzIvhwL0jx54x5skOXXfkqGDHO2XLKG1NLZVRB3_-HbuKcxvJVljPa1KputCzUxx3lUsw5YXgohlH7Zzjsv-Eo8LvH5T-gf6dB_AaCxbWO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108565874</pqid></control><display><type>article</type><title>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Presa, Fernando Bastos ; Marques, Maxsuell Lucas Mendes ; Viana, Rony Lucas Silva ; Nobre, Leonardo Thiago Duarte Barreto ; Costa, Leandro Silva ; Rocha, Hugo Alexandre Oliveira</creator><creatorcontrib>Presa, Fernando Bastos ; Marques, Maxsuell Lucas Mendes ; Viana, Rony Lucas Silva ; Nobre, Leonardo Thiago Duarte Barreto ; Costa, Leandro Silva ; Rocha, Hugo Alexandre Oliveira</creatorcontrib><description>Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.</description><identifier>ISSN: 1660-3397</identifier><identifier>EISSN: 1660-3397</identifier><identifier>DOI: 10.3390/md16040135</identifier><identifier>PMID: 29677120</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3T3 Cells ; 3T3 fibroblasts ; Acetone ; Algae ; Animals ; Antioxidants ; Antioxidants - metabolism ; Apoptosis ; Apoptosis - drug effects ; Ascorbic acid ; Biochemical analysis ; Capacity ; Caspase ; Caspase 3 - metabolism ; Caspase 9 - metabolism ; Caspase-3 ; Caspase-9 ; Cell Line ; Cell Survival - drug effects ; Cells ; Chelation ; Chlorophyta - chemistry ; Copper ; Copper sulfate ; Damage ; Detection ; Exposure ; Fibroblasts ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Galactans ; Glutathione ; green seaweed ; Iron ; Iron sulfates ; Lipid peroxidation ; Lipid Peroxidation - drug effects ; Lipids ; Malondialdehyde ; Malondialdehyde - metabolism ; Mice ; Oxidation ; Oxidation-Reduction - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Peroxidation ; Polysaccharides ; Polysaccharides - pharmacology ; Protective Agents - pharmacology ; Proteolysis ; Saccharides ; Salts ; Seaweed - chemistry ; Seaweeds ; sulfated galactan ; Sulfates - pharmacology ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Udotea flabellum</subject><ispartof>Marine drugs, 2018-04, Vol.16 (4), p.135</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</citedby><cites>FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</cites><orcidid>0000-0003-2252-1221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108565874/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108565874?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29677120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Presa, Fernando Bastos</creatorcontrib><creatorcontrib>Marques, Maxsuell Lucas Mendes</creatorcontrib><creatorcontrib>Viana, Rony Lucas Silva</creatorcontrib><creatorcontrib>Nobre, Leonardo Thiago Duarte Barreto</creatorcontrib><creatorcontrib>Costa, Leandro Silva</creatorcontrib><creatorcontrib>Rocha, Hugo Alexandre Oliveira</creatorcontrib><title>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</title><title>Marine drugs</title><addtitle>Mar Drugs</addtitle><description>Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.</description><subject>3T3 Cells</subject><subject>3T3 fibroblasts</subject><subject>Acetone</subject><subject>Algae</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Ascorbic acid</subject><subject>Biochemical analysis</subject><subject>Capacity</subject><subject>Caspase</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 9 - metabolism</subject><subject>Caspase-3</subject><subject>Caspase-9</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Cells</subject><subject>Chelation</subject><subject>Chlorophyta - chemistry</subject><subject>Copper</subject><subject>Copper sulfate</subject><subject>Damage</subject><subject>Detection</subject><subject>Exposure</subject><subject>Fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Galactans</subject><subject>Glutathione</subject><subject>green seaweed</subject><subject>Iron</subject><subject>Iron sulfates</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipids</subject><subject>Malondialdehyde</subject><subject>Malondialdehyde - metabolism</subject><subject>Mice</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Peroxidation</subject><subject>Polysaccharides</subject><subject>Polysaccharides - pharmacology</subject><subject>Protective Agents - pharmacology</subject><subject>Proteolysis</subject><subject>Saccharides</subject><subject>Salts</subject><subject>Seaweed - chemistry</subject><subject>Seaweeds</subject><subject>sulfated galactan</subject><subject>Sulfates - pharmacology</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Udotea flabellum</subject><issn>1660-3397</issn><issn>1660-3397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRbK2--AdIwBcRTvNrk82LUM5aC4UW2z6H2WRyt8fu5kx2a_vfG3u1tr4kYfLlm5kwVfWW0U9CGPp58ExRSZmon1X7TCm6KGH9_NF5r3qV84ZSUTdGvqz2uFFaM073q5vLNZLzFCd0U3eN5EfskcRALuY-wISenMf-NoNza0idx0xCigM5TogjuUD4hQW58uU5kNBDi30_D6QbybKcMjm62cZciCmSs5vOw12KrzDACl9XLwL0Gd_c7wfV1bejy-X3xenZ8cny8HThpObTQmmJAZxxwLgIQpcOFFW-QVY3TJcGQXvggRoQrfN1KZQ7QRsdWtpQaVpxUJ3svD7Cxm5TN0C6tRE6exeIaWUhTZ3r0apAQxEGkIHJkqs1ZW3rtujBKI7F9WXn2s7tgN7hOCXon0if3ozd2q7ita0NF5LzIvhwL0jx54x5skOXXfkqGDHO2XLKG1NLZVRB3_-HbuKcxvJVljPa1KputCzUxx3lUsw5YXgohlH7Zzjsv-Eo8LvH5T-gf6dB_AaCxbWO</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Presa, Fernando Bastos</creator><creator>Marques, Maxsuell Lucas Mendes</creator><creator>Viana, Rony Lucas Silva</creator><creator>Nobre, Leonardo Thiago Duarte Barreto</creator><creator>Costa, Leandro Silva</creator><creator>Rocha, Hugo Alexandre Oliveira</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2252-1221</orcidid></search><sort><creationdate>20180420</creationdate><title>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</title><author>Presa, Fernando Bastos ; Marques, Maxsuell Lucas Mendes ; Viana, Rony Lucas Silva ; Nobre, Leonardo Thiago Duarte Barreto ; Costa, Leandro Silva ; Rocha, Hugo Alexandre Oliveira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3T3 Cells</topic><topic>3T3 fibroblasts</topic><topic>Acetone</topic><topic>Algae</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Ascorbic acid</topic><topic>Biochemical analysis</topic><topic>Capacity</topic><topic>Caspase</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 9 - metabolism</topic><topic>Caspase-3</topic><topic>Caspase-9</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Cells</topic><topic>Chelation</topic><topic>Chlorophyta - chemistry</topic><topic>Copper</topic><topic>Copper sulfate</topic><topic>Damage</topic><topic>Detection</topic><topic>Exposure</topic><topic>Fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Galactans</topic><topic>Glutathione</topic><topic>green seaweed</topic><topic>Iron</topic><topic>Iron sulfates</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipids</topic><topic>Malondialdehyde</topic><topic>Malondialdehyde - metabolism</topic><topic>Mice</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Peroxidation</topic><topic>Polysaccharides</topic><topic>Polysaccharides - pharmacology</topic><topic>Protective Agents - pharmacology</topic><topic>Proteolysis</topic><topic>Saccharides</topic><topic>Salts</topic><topic>Seaweed - chemistry</topic><topic>Seaweeds</topic><topic>sulfated galactan</topic><topic>Sulfates - pharmacology</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Udotea flabellum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Presa, Fernando Bastos</creatorcontrib><creatorcontrib>Marques, Maxsuell Lucas Mendes</creatorcontrib><creatorcontrib>Viana, Rony Lucas Silva</creatorcontrib><creatorcontrib>Nobre, Leonardo Thiago Duarte Barreto</creatorcontrib><creatorcontrib>Costa, Leandro Silva</creatorcontrib><creatorcontrib>Rocha, Hugo Alexandre Oliveira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Marine drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Presa, Fernando Bastos</au><au>Marques, Maxsuell Lucas Mendes</au><au>Viana, Rony Lucas Silva</au><au>Nobre, Leonardo Thiago Duarte Barreto</au><au>Costa, Leandro Silva</au><au>Rocha, Hugo Alexandre Oliveira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage</atitle><jtitle>Marine drugs</jtitle><addtitle>Mar Drugs</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>16</volume><issue>4</issue><spage>135</spage><pages>135-</pages><issn>1660-3397</issn><eissn>1660-3397</eissn><abstract>Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO₄ (2 µM), CuSO₄ (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO₄ or CuSO₄ and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29677120</pmid><doi>10.3390/md16040135</doi><orcidid>https://orcid.org/0000-0003-2252-1221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-3397
ispartof Marine drugs, 2018-04, Vol.16 (4), p.135
issn 1660-3397
1660-3397
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6f0f66afa4f14f37b94f3b5b2f0a962e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects 3T3 Cells
3T3 fibroblasts
Acetone
Algae
Animals
Antioxidants
Antioxidants - metabolism
Apoptosis
Apoptosis - drug effects
Ascorbic acid
Biochemical analysis
Capacity
Caspase
Caspase 3 - metabolism
Caspase 9 - metabolism
Caspase-3
Caspase-9
Cell Line
Cell Survival - drug effects
Cells
Chelation
Chlorophyta - chemistry
Copper
Copper sulfate
Damage
Detection
Exposure
Fibroblasts
Fibroblasts - drug effects
Fibroblasts - metabolism
Galactans
Glutathione
green seaweed
Iron
Iron sulfates
Lipid peroxidation
Lipid Peroxidation - drug effects
Lipids
Malondialdehyde
Malondialdehyde - metabolism
Mice
Oxidation
Oxidation-Reduction - drug effects
Oxidative stress
Oxidative Stress - drug effects
Peroxidation
Polysaccharides
Polysaccharides - pharmacology
Protective Agents - pharmacology
Proteolysis
Saccharides
Salts
Seaweed - chemistry
Seaweeds
sulfated galactan
Sulfates - pharmacology
Superoxide dismutase
Superoxide Dismutase - metabolism
Udotea flabellum
title The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Protective%20Role%20of%20Sulfated%20Polysaccharides%20from%20Green%20Seaweed%20Udotea%20flabellum%20in%20Cells%20Exposed%20to%20Oxidative%20Damage&rft.jtitle=Marine%20drugs&rft.au=Presa,%20Fernando%20Bastos&rft.date=2018-04-20&rft.volume=16&rft.issue=4&rft.spage=135&rft.pages=135-&rft.issn=1660-3397&rft.eissn=1660-3397&rft_id=info:doi/10.3390/md16040135&rft_dat=%3Cproquest_doaj_%3E2028954696%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-674efac9ca123f37358606d8e15817166a7da2f09a3bcd5acc2c3087fb08049b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108565874&rft_id=info:pmid/29677120&rfr_iscdi=true