Loading…
What’s Next? A Recommendation System for Industrial Training
Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hen...
Saved in:
Published in: | Data science and engineering 2018-09, Vol.3 (3), p.232-247 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3 |
container_end_page | 247 |
container_issue | 3 |
container_start_page | 232 |
container_title | Data science and engineering |
container_volume | 3 |
creator | Srivastava, Rajiv Palshikar, Girish Keshav Chaurasia, Saheb Dixit, Arati |
description | Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms. |
doi_str_mv | 10.1007/s41019-018-0076-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f2e62ee57534d37b9e27f6c83e622f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f2e62ee57534d37b9e27f6c83e622f0</doaj_id><sourcerecordid>2407553560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwOuR5NMXrNRSvFRKApacRnSmZs6pZ3UJAW78zf8Pb_E1PGxcnXvOZxz7uUgdEzwKcFYngVGMClzTFSeoMjpHurRQrCccEb2f3ai-CEahLDAGNOEGBM9dP70bOLH23vIbuE1XmTD7B4qt1pBW5vYuDZ72IYIq8w6n43behOib8wym3rTtE07P0IH1iwDDL5nHz1eXU5HN_nk7no8Gk7yipUq5qRghgEQhotSVpWQM46lIUpQZY0qTYJkVlpFscVSKkkkWEwNp8SUleVQ9NG4y62dWei1b1bGb7Uzjf4inJ9r42NTLUELS0FQAC55wepCzkqg0opKFYmmFqesky5r7d3LBkLUC7fxbXpfU4Yl5wUXOxXpVJV3IXiwv1cJ1rvWdde6Tq3rXeuaJg_tPCFp2zn4v-T_TZ8sd4K6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407553560</pqid></control><display><type>article</type><title>What’s Next? A Recommendation System for Industrial Training</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Srivastava, Rajiv ; Palshikar, Girish Keshav ; Chaurasia, Saheb ; Dixit, Arati</creator><creatorcontrib>Srivastava, Rajiv ; Palshikar, Girish Keshav ; Chaurasia, Saheb ; Dixit, Arati</creatorcontrib><description>Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.</description><identifier>ISSN: 2364-1185</identifier><identifier>EISSN: 2364-1541</identifier><identifier>DOI: 10.1007/s41019-018-0076-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Industrial training ; Leadership ; Personalized recommendation ; Physics ; Project management ; Recommender systems ; Sequence matching ; Sequence mining ; Statistics for Engineering ; Systems and Data Security ; Training</subject><ispartof>Data science and engineering, 2018-09, Vol.3 (3), p.232-247</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</citedby><cites>FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</cites><orcidid>0000-0002-9466-8647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2407553560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Srivastava, Rajiv</creatorcontrib><creatorcontrib>Palshikar, Girish Keshav</creatorcontrib><creatorcontrib>Chaurasia, Saheb</creatorcontrib><creatorcontrib>Dixit, Arati</creatorcontrib><title>What’s Next? A Recommendation System for Industrial Training</title><title>Data science and engineering</title><addtitle>Data Sci. Eng</addtitle><description>Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Industrial training</subject><subject>Leadership</subject><subject>Personalized recommendation</subject><subject>Physics</subject><subject>Project management</subject><subject>Recommender systems</subject><subject>Sequence matching</subject><subject>Sequence mining</subject><subject>Statistics for Engineering</subject><subject>Systems and Data Security</subject><subject>Training</subject><issn>2364-1185</issn><issn>2364-1541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMtKAzEUDaJgqf0AdwOuR5NMXrNRSvFRKApacRnSmZs6pZ3UJAW78zf8Pb_E1PGxcnXvOZxz7uUgdEzwKcFYngVGMClzTFSeoMjpHurRQrCccEb2f3ai-CEahLDAGNOEGBM9dP70bOLH23vIbuE1XmTD7B4qt1pBW5vYuDZ72IYIq8w6n43behOib8wym3rTtE07P0IH1iwDDL5nHz1eXU5HN_nk7no8Gk7yipUq5qRghgEQhotSVpWQM46lIUpQZY0qTYJkVlpFscVSKkkkWEwNp8SUleVQ9NG4y62dWei1b1bGb7Uzjf4inJ9r42NTLUELS0FQAC55wepCzkqg0opKFYmmFqesky5r7d3LBkLUC7fxbXpfU4Yl5wUXOxXpVJV3IXiwv1cJ1rvWdde6Tq3rXeuaJg_tPCFp2zn4v-T_TZ8sd4K6</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Srivastava, Rajiv</creator><creator>Palshikar, Girish Keshav</creator><creator>Chaurasia, Saheb</creator><creator>Dixit, Arati</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9466-8647</orcidid></search><sort><creationdate>20180901</creationdate><title>What’s Next? A Recommendation System for Industrial Training</title><author>Srivastava, Rajiv ; Palshikar, Girish Keshav ; Chaurasia, Saheb ; Dixit, Arati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Industrial training</topic><topic>Leadership</topic><topic>Personalized recommendation</topic><topic>Physics</topic><topic>Project management</topic><topic>Recommender systems</topic><topic>Sequence matching</topic><topic>Sequence mining</topic><topic>Statistics for Engineering</topic><topic>Systems and Data Security</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Rajiv</creatorcontrib><creatorcontrib>Palshikar, Girish Keshav</creatorcontrib><creatorcontrib>Chaurasia, Saheb</creatorcontrib><creatorcontrib>Dixit, Arati</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Data science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Rajiv</au><au>Palshikar, Girish Keshav</au><au>Chaurasia, Saheb</au><au>Dixit, Arati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What’s Next? A Recommendation System for Industrial Training</atitle><jtitle>Data science and engineering</jtitle><stitle>Data Sci. Eng</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>232</spage><epage>247</epage><pages>232-247</pages><issn>2364-1185</issn><eissn>2364-1541</eissn><abstract>Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s41019-018-0076-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9466-8647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2364-1185 |
ispartof | Data science and engineering, 2018-09, Vol.3 (3), p.232-247 |
issn | 2364-1185 2364-1541 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6f2e62ee57534d37b9e27f6c83e622f0 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Algorithm Analysis and Problem Complexity Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data mining Data Mining and Knowledge Discovery Database Management Industrial training Leadership Personalized recommendation Physics Project management Recommender systems Sequence matching Sequence mining Statistics for Engineering Systems and Data Security Training |
title | What’s Next? A Recommendation System for Industrial Training |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%E2%80%99s%20Next?%20A%20Recommendation%20System%20for%20Industrial%20Training&rft.jtitle=Data%20science%20and%20engineering&rft.au=Srivastava,%20Rajiv&rft.date=2018-09-01&rft.volume=3&rft.issue=3&rft.spage=232&rft.epage=247&rft.pages=232-247&rft.issn=2364-1185&rft.eissn=2364-1541&rft_id=info:doi/10.1007/s41019-018-0076-2&rft_dat=%3Cproquest_doaj_%3E2407553560%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407553560&rft_id=info:pmid/&rfr_iscdi=true |