Loading…

What’s Next? A Recommendation System for Industrial Training

Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hen...

Full description

Saved in:
Bibliographic Details
Published in:Data science and engineering 2018-09, Vol.3 (3), p.232-247
Main Authors: Srivastava, Rajiv, Palshikar, Girish Keshav, Chaurasia, Saheb, Dixit, Arati
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3
cites cdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3
container_end_page 247
container_issue 3
container_start_page 232
container_title Data science and engineering
container_volume 3
creator Srivastava, Rajiv
Palshikar, Girish Keshav
Chaurasia, Saheb
Dixit, Arati
description Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.
doi_str_mv 10.1007/s41019-018-0076-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f2e62ee57534d37b9e27f6c83e622f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f2e62ee57534d37b9e27f6c83e622f0</doaj_id><sourcerecordid>2407553560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwOuR5NMXrNRSvFRKApacRnSmZs6pZ3UJAW78zf8Pb_E1PGxcnXvOZxz7uUgdEzwKcFYngVGMClzTFSeoMjpHurRQrCccEb2f3ai-CEahLDAGNOEGBM9dP70bOLH23vIbuE1XmTD7B4qt1pBW5vYuDZ72IYIq8w6n43behOib8wym3rTtE07P0IH1iwDDL5nHz1eXU5HN_nk7no8Gk7yipUq5qRghgEQhotSVpWQM46lIUpQZY0qTYJkVlpFscVSKkkkWEwNp8SUleVQ9NG4y62dWei1b1bGb7Uzjf4inJ9r42NTLUELS0FQAC55wepCzkqg0opKFYmmFqesky5r7d3LBkLUC7fxbXpfU4Yl5wUXOxXpVJV3IXiwv1cJ1rvWdde6Tq3rXeuaJg_tPCFp2zn4v-T_TZ8sd4K6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407553560</pqid></control><display><type>article</type><title>What’s Next? A Recommendation System for Industrial Training</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Srivastava, Rajiv ; Palshikar, Girish Keshav ; Chaurasia, Saheb ; Dixit, Arati</creator><creatorcontrib>Srivastava, Rajiv ; Palshikar, Girish Keshav ; Chaurasia, Saheb ; Dixit, Arati</creatorcontrib><description>Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.</description><identifier>ISSN: 2364-1185</identifier><identifier>EISSN: 2364-1541</identifier><identifier>DOI: 10.1007/s41019-018-0076-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Industrial training ; Leadership ; Personalized recommendation ; Physics ; Project management ; Recommender systems ; Sequence matching ; Sequence mining ; Statistics for Engineering ; Systems and Data Security ; Training</subject><ispartof>Data science and engineering, 2018-09, Vol.3 (3), p.232-247</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</citedby><cites>FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</cites><orcidid>0000-0002-9466-8647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2407553560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Srivastava, Rajiv</creatorcontrib><creatorcontrib>Palshikar, Girish Keshav</creatorcontrib><creatorcontrib>Chaurasia, Saheb</creatorcontrib><creatorcontrib>Dixit, Arati</creatorcontrib><title>What’s Next? A Recommendation System for Industrial Training</title><title>Data science and engineering</title><addtitle>Data Sci. Eng</addtitle><description>Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Industrial training</subject><subject>Leadership</subject><subject>Personalized recommendation</subject><subject>Physics</subject><subject>Project management</subject><subject>Recommender systems</subject><subject>Sequence matching</subject><subject>Sequence mining</subject><subject>Statistics for Engineering</subject><subject>Systems and Data Security</subject><subject>Training</subject><issn>2364-1185</issn><issn>2364-1541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMtKAzEUDaJgqf0AdwOuR5NMXrNRSvFRKApacRnSmZs6pZ3UJAW78zf8Pb_E1PGxcnXvOZxz7uUgdEzwKcFYngVGMClzTFSeoMjpHurRQrCccEb2f3ai-CEahLDAGNOEGBM9dP70bOLH23vIbuE1XmTD7B4qt1pBW5vYuDZ72IYIq8w6n43behOib8wym3rTtE07P0IH1iwDDL5nHz1eXU5HN_nk7no8Gk7yipUq5qRghgEQhotSVpWQM46lIUpQZY0qTYJkVlpFscVSKkkkWEwNp8SUleVQ9NG4y62dWei1b1bGb7Uzjf4inJ9r42NTLUELS0FQAC55wepCzkqg0opKFYmmFqesky5r7d3LBkLUC7fxbXpfU4Yl5wUXOxXpVJV3IXiwv1cJ1rvWdde6Tq3rXeuaJg_tPCFp2zn4v-T_TZ8sd4K6</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Srivastava, Rajiv</creator><creator>Palshikar, Girish Keshav</creator><creator>Chaurasia, Saheb</creator><creator>Dixit, Arati</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9466-8647</orcidid></search><sort><creationdate>20180901</creationdate><title>What’s Next? A Recommendation System for Industrial Training</title><author>Srivastava, Rajiv ; Palshikar, Girish Keshav ; Chaurasia, Saheb ; Dixit, Arati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Industrial training</topic><topic>Leadership</topic><topic>Personalized recommendation</topic><topic>Physics</topic><topic>Project management</topic><topic>Recommender systems</topic><topic>Sequence matching</topic><topic>Sequence mining</topic><topic>Statistics for Engineering</topic><topic>Systems and Data Security</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Rajiv</creatorcontrib><creatorcontrib>Palshikar, Girish Keshav</creatorcontrib><creatorcontrib>Chaurasia, Saheb</creatorcontrib><creatorcontrib>Dixit, Arati</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Data science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Rajiv</au><au>Palshikar, Girish Keshav</au><au>Chaurasia, Saheb</au><au>Dixit, Arati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What’s Next? A Recommendation System for Industrial Training</atitle><jtitle>Data science and engineering</jtitle><stitle>Data Sci. Eng</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>232</spage><epage>247</epage><pages>232-247</pages><issn>2364-1185</issn><eissn>2364-1541</eissn><abstract>Continuous training is crucial for creating and maintaining the right skill-profile for the industrial organization’s workforce. There is a tremendous variety in the available trainings within an organization: technical, project management, quality, leadership, domain-specific, soft-skills, etc. Hence it is important to assist the employee in choosing the best trainings, which perfectly suits her background, project needs and career goals. In this paper, we focus on algorithms for training recommendation in an industrial setting. We formalize the problem of next training recommendation, taking into account the employee’s training and work history. We present several new unsupervised sequence mining algorithms to mine the past trainings data from the organization for arriving at personalized next training recommendation. Using the real-life data about trainings of 118,587 employees over 5019 distinct trainings from a large multi-national IT organization, we show that these algorithms outperform several standard recommendation engine algorithms as well as those based on standard sequence mining algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s41019-018-0076-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9466-8647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2364-1185
ispartof Data science and engineering, 2018-09, Vol.3 (3), p.232-247
issn 2364-1185
2364-1541
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6f2e62ee57534d37b9e27f6c83e622f0
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithm Analysis and Problem Complexity
Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data mining
Data Mining and Knowledge Discovery
Database Management
Industrial training
Leadership
Personalized recommendation
Physics
Project management
Recommender systems
Sequence matching
Sequence mining
Statistics for Engineering
Systems and Data Security
Training
title What’s Next? A Recommendation System for Industrial Training
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%E2%80%99s%20Next?%20A%20Recommendation%20System%20for%20Industrial%20Training&rft.jtitle=Data%20science%20and%20engineering&rft.au=Srivastava,%20Rajiv&rft.date=2018-09-01&rft.volume=3&rft.issue=3&rft.spage=232&rft.epage=247&rft.pages=232-247&rft.issn=2364-1185&rft.eissn=2364-1541&rft_id=info:doi/10.1007/s41019-018-0076-2&rft_dat=%3Cproquest_doaj_%3E2407553560%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-134a4ee140397cc67b507a18628fa89ab501b9f820f0778717ef02a521a9cf5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407553560&rft_id=info:pmid/&rfr_iscdi=true