Loading…
Hydrothermal Synthesis, Phase Analysis, and Magneto-Electronic Characterizations of Lead-Free Ferroelectric BM2+(Zn, Ca, Mg)T–BFO System
In this study, lead-free BiM2+(Zn, Ca, Mg)Ti–BiFeO3 ceramics are fabricated under eco-friendly hydrothermal reaction conditions at 250 °C. XRD patterns show that all the synthesized compounds exhibit a phase coexistence of monoclinic and tetragonal perovskite-type structures with a morphotropic pha...
Saved in:
Published in: | ACS omega 2024-02, Vol.9 (8), p.9147-9160 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9160 |
container_issue | 8 |
container_start_page | 9147 |
container_title | ACS omega |
container_volume | 9 |
creator | Hossain, K. Monower Rubel, M. H. Kabir Hossain, M. Khalid Ishraque Toki, G. F. Marasamy, Latha Haldhar, Rajesh Ali, Md Hasan Baruah, Smriti A. Alothman, Asma Mohammad, Saikh |
description | In this study, lead-free BiM2+(Zn, Ca, Mg)Ti–BiFeO3 ceramics are fabricated under eco-friendly hydrothermal reaction conditions at 250 °C. XRD patterns show that all the synthesized compounds exhibit a phase coexistence of monoclinic and tetragonal perovskite-type structures with a morphotropic phase boundary at x = 0.4, with minimum impurity. The calculated average crystallite/grain size of the samples was close to 50 nm at full width at half-maximum of the main peak. The corresponding bonds of the constituent elements were observed by FTIR analysis, which further supports the formation of the local structure. EDS analyses detect all of the elements, their quantities, and compositional homogeneity. SEM data show agglomerated and nearly spherical morphology with an average particle size of about 128 nm. All synthesized ceramic powders revealed thermal stability with trivial mass loss up to investigated high temperatures (1000 οC). The dielectric constant reached its maximum at 38.7 MHz and finally remained constant after 80 MHz for all nanoceramics. Because of the complementary impact of different compositions, the most effective piezoelectric characteristics of d 33 = 136 pCN–1, P r = 8.6 pCN–1 cm–2, and k p = 11% at 30 °C were attained at x = 0.4 content for 0.4BiCaTi–0.6BiFeO3 ceramic. The measured magnetic hysteresis data (M–H curve) showed a weak ferromagnetic nature with the highest moment of ∼0.23 emu/g for 0.4BiCaTi–0.6BiFeO3, and other samples exhibited negligible ferromagnetic to diamagnetic transition. The optical response study shows that the 0.4BiMgTi–0.6BiFeO3 sample yielded the maximal transmittance (50%), whereas the 0.4BiCaTi–0.6BiFeO3 compound exhibited the highest refractive index. The calculated large band gap shows a high insulating or dielectric nature. Our findings demonstrate that the BiM2+Ti–BiFeO3 system, which was fabricated using a low-temperature hydrothermal technique, is an excellent lead-free piezoelectric and multiferroic nanoceramic. |
doi_str_mv | 10.1021/acsomega.3c08072 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f759e1082ed46ebab2f8bd723484f6e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f759e1082ed46ebab2f8bd723484f6e</doaj_id><sourcerecordid>2937338231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-aabdf4cf144b0331fcaa6c900a6fefcb9d40c497c8ce9cf0df67ce38bcde894a3</originalsourceid><addsrcrecordid>eNpNkU1PGzEQhlcVlYoo9x59BJEFf9XrPUKUFKREVCq99GLN2uNko9012M4hnDhz7T_sL-k2Aamn-dCjd6R5iuILo5eMcnYFNoUeV3ApLNW04h-KYy4rWjIhxdF__afiNKUNpZQpzTVXx8Xr7c7FkNcYe-jIj90wtqlNE_J9DQnJ9QDdbj_D4MgSVgPmUM46tDmGobVkuoYINmNsnyG3YUgkeLJAcOU8IpI5xhhwj4_wzZJfnP0aJmQKE7JcnT_8efl9M78fz6aM_efio4cu4elbPSl-zmcP09tycf_tbnq9KIErkUuAxnlpPZOyoUIwbwGUrSkF5dHbpnaSWllXVlusrafOq8qi0I11qGsJ4qS4O-S6ABvzGNse4s4EaM1-EeLKQMyt7dAoX32tkVHN0UmFDTTc68ZVXEgtvcIx6-yQ9RjD0xZTNn2bLHYdDBi2yfBaVEJoLtiITg7oKMtswjaOr02GUfPPoHk3aN4Mir_KqJLj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937338231</pqid></control><display><type>article</type><title>Hydrothermal Synthesis, Phase Analysis, and Magneto-Electronic Characterizations of Lead-Free Ferroelectric BM2+(Zn, Ca, Mg)T–BFO System</title><source>Open Access: PubMed Central</source><source>American Chemical Society (ACS) Open Access</source><creator>Hossain, K. Monower ; Rubel, M. H. Kabir ; Hossain, M. Khalid ; Ishraque Toki, G. F. ; Marasamy, Latha ; Haldhar, Rajesh ; Ali, Md Hasan ; Baruah, Smriti ; A. Alothman, Asma ; Mohammad, Saikh</creator><creatorcontrib>Hossain, K. Monower ; Rubel, M. H. Kabir ; Hossain, M. Khalid ; Ishraque Toki, G. F. ; Marasamy, Latha ; Haldhar, Rajesh ; Ali, Md Hasan ; Baruah, Smriti ; A. Alothman, Asma ; Mohammad, Saikh</creatorcontrib><description>In this study, lead-free BiM2+(Zn, Ca, Mg)Ti–BiFeO3 ceramics are fabricated under eco-friendly hydrothermal reaction conditions at 250 °C. XRD patterns show that all the synthesized compounds exhibit a phase coexistence of monoclinic and tetragonal perovskite-type structures with a morphotropic phase boundary at x = 0.4, with minimum impurity. The calculated average crystallite/grain size of the samples was close to 50 nm at full width at half-maximum of the main peak. The corresponding bonds of the constituent elements were observed by FTIR analysis, which further supports the formation of the local structure. EDS analyses detect all of the elements, their quantities, and compositional homogeneity. SEM data show agglomerated and nearly spherical morphology with an average particle size of about 128 nm. All synthesized ceramic powders revealed thermal stability with trivial mass loss up to investigated high temperatures (1000 οC). The dielectric constant reached its maximum at 38.7 MHz and finally remained constant after 80 MHz for all nanoceramics. Because of the complementary impact of different compositions, the most effective piezoelectric characteristics of d 33 = 136 pCN–1, P r = 8.6 pCN–1 cm–2, and k p = 11% at 30 °C were attained at x = 0.4 content for 0.4BiCaTi–0.6BiFeO3 ceramic. The measured magnetic hysteresis data (M–H curve) showed a weak ferromagnetic nature with the highest moment of ∼0.23 emu/g for 0.4BiCaTi–0.6BiFeO3, and other samples exhibited negligible ferromagnetic to diamagnetic transition. The optical response study shows that the 0.4BiMgTi–0.6BiFeO3 sample yielded the maximal transmittance (50%), whereas the 0.4BiCaTi–0.6BiFeO3 compound exhibited the highest refractive index. The calculated large band gap shows a high insulating or dielectric nature. Our findings demonstrate that the BiM2+Ti–BiFeO3 system, which was fabricated using a low-temperature hydrothermal technique, is an excellent lead-free piezoelectric and multiferroic nanoceramic.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.3c08072</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2024-02, Vol.9 (8), p.9147-9160</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9420-4335 ; 0000-0002-6761-3042 ; 0000-0003-4595-6367 ; 0000-0003-3120-6733 ; 0000-0002-2564-0894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.3c08072$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.3c08072$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27080,27924,27925,56762,56812</link.rule.ids></links><search><creatorcontrib>Hossain, K. Monower</creatorcontrib><creatorcontrib>Rubel, M. H. Kabir</creatorcontrib><creatorcontrib>Hossain, M. Khalid</creatorcontrib><creatorcontrib>Ishraque Toki, G. F.</creatorcontrib><creatorcontrib>Marasamy, Latha</creatorcontrib><creatorcontrib>Haldhar, Rajesh</creatorcontrib><creatorcontrib>Ali, Md Hasan</creatorcontrib><creatorcontrib>Baruah, Smriti</creatorcontrib><creatorcontrib>A. Alothman, Asma</creatorcontrib><creatorcontrib>Mohammad, Saikh</creatorcontrib><title>Hydrothermal Synthesis, Phase Analysis, and Magneto-Electronic Characterizations of Lead-Free Ferroelectric BM2+(Zn, Ca, Mg)T–BFO System</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>In this study, lead-free BiM2+(Zn, Ca, Mg)Ti–BiFeO3 ceramics are fabricated under eco-friendly hydrothermal reaction conditions at 250 °C. XRD patterns show that all the synthesized compounds exhibit a phase coexistence of monoclinic and tetragonal perovskite-type structures with a morphotropic phase boundary at x = 0.4, with minimum impurity. The calculated average crystallite/grain size of the samples was close to 50 nm at full width at half-maximum of the main peak. The corresponding bonds of the constituent elements were observed by FTIR analysis, which further supports the formation of the local structure. EDS analyses detect all of the elements, their quantities, and compositional homogeneity. SEM data show agglomerated and nearly spherical morphology with an average particle size of about 128 nm. All synthesized ceramic powders revealed thermal stability with trivial mass loss up to investigated high temperatures (1000 οC). The dielectric constant reached its maximum at 38.7 MHz and finally remained constant after 80 MHz for all nanoceramics. Because of the complementary impact of different compositions, the most effective piezoelectric characteristics of d 33 = 136 pCN–1, P r = 8.6 pCN–1 cm–2, and k p = 11% at 30 °C were attained at x = 0.4 content for 0.4BiCaTi–0.6BiFeO3 ceramic. The measured magnetic hysteresis data (M–H curve) showed a weak ferromagnetic nature with the highest moment of ∼0.23 emu/g for 0.4BiCaTi–0.6BiFeO3, and other samples exhibited negligible ferromagnetic to diamagnetic transition. The optical response study shows that the 0.4BiMgTi–0.6BiFeO3 sample yielded the maximal transmittance (50%), whereas the 0.4BiCaTi–0.6BiFeO3 compound exhibited the highest refractive index. The calculated large band gap shows a high insulating or dielectric nature. Our findings demonstrate that the BiM2+Ti–BiFeO3 system, which was fabricated using a low-temperature hydrothermal technique, is an excellent lead-free piezoelectric and multiferroic nanoceramic.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PGzEQhlcVlYoo9x59BJEFf9XrPUKUFKREVCq99GLN2uNko9012M4hnDhz7T_sL-k2Aamn-dCjd6R5iuILo5eMcnYFNoUeV3ApLNW04h-KYy4rWjIhxdF__afiNKUNpZQpzTVXx8Xr7c7FkNcYe-jIj90wtqlNE_J9DQnJ9QDdbj_D4MgSVgPmUM46tDmGobVkuoYINmNsnyG3YUgkeLJAcOU8IpI5xhhwj4_wzZJfnP0aJmQKE7JcnT_8efl9M78fz6aM_efio4cu4elbPSl-zmcP09tycf_tbnq9KIErkUuAxnlpPZOyoUIwbwGUrSkF5dHbpnaSWllXVlusrafOq8qi0I11qGsJ4qS4O-S6ABvzGNse4s4EaM1-EeLKQMyt7dAoX32tkVHN0UmFDTTc68ZVXEgtvcIx6-yQ9RjD0xZTNn2bLHYdDBi2yfBaVEJoLtiITg7oKMtswjaOr02GUfPPoHk3aN4Mir_KqJLj</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Hossain, K. Monower</creator><creator>Rubel, M. H. Kabir</creator><creator>Hossain, M. Khalid</creator><creator>Ishraque Toki, G. F.</creator><creator>Marasamy, Latha</creator><creator>Haldhar, Rajesh</creator><creator>Ali, Md Hasan</creator><creator>Baruah, Smriti</creator><creator>A. Alothman, Asma</creator><creator>Mohammad, Saikh</creator><general>American Chemical Society</general><scope>N~.</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9420-4335</orcidid><orcidid>https://orcid.org/0000-0002-6761-3042</orcidid><orcidid>https://orcid.org/0000-0003-4595-6367</orcidid><orcidid>https://orcid.org/0000-0003-3120-6733</orcidid><orcidid>https://orcid.org/0000-0002-2564-0894</orcidid></search><sort><creationdate>20240227</creationdate><title>Hydrothermal Synthesis, Phase Analysis, and Magneto-Electronic Characterizations of Lead-Free Ferroelectric BM2+(Zn, Ca, Mg)T–BFO System</title><author>Hossain, K. Monower ; Rubel, M. H. Kabir ; Hossain, M. Khalid ; Ishraque Toki, G. F. ; Marasamy, Latha ; Haldhar, Rajesh ; Ali, Md Hasan ; Baruah, Smriti ; A. Alothman, Asma ; Mohammad, Saikh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-aabdf4cf144b0331fcaa6c900a6fefcb9d40c497c8ce9cf0df67ce38bcde894a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, K. Monower</creatorcontrib><creatorcontrib>Rubel, M. H. Kabir</creatorcontrib><creatorcontrib>Hossain, M. Khalid</creatorcontrib><creatorcontrib>Ishraque Toki, G. F.</creatorcontrib><creatorcontrib>Marasamy, Latha</creatorcontrib><creatorcontrib>Haldhar, Rajesh</creatorcontrib><creatorcontrib>Ali, Md Hasan</creatorcontrib><creatorcontrib>Baruah, Smriti</creatorcontrib><creatorcontrib>A. Alothman, Asma</creatorcontrib><creatorcontrib>Mohammad, Saikh</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, K. Monower</au><au>Rubel, M. H. Kabir</au><au>Hossain, M. Khalid</au><au>Ishraque Toki, G. F.</au><au>Marasamy, Latha</au><au>Haldhar, Rajesh</au><au>Ali, Md Hasan</au><au>Baruah, Smriti</au><au>A. Alothman, Asma</au><au>Mohammad, Saikh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Synthesis, Phase Analysis, and Magneto-Electronic Characterizations of Lead-Free Ferroelectric BM2+(Zn, Ca, Mg)T–BFO System</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>9</volume><issue>8</issue><spage>9147</spage><epage>9160</epage><pages>9147-9160</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>In this study, lead-free BiM2+(Zn, Ca, Mg)Ti–BiFeO3 ceramics are fabricated under eco-friendly hydrothermal reaction conditions at 250 °C. XRD patterns show that all the synthesized compounds exhibit a phase coexistence of monoclinic and tetragonal perovskite-type structures with a morphotropic phase boundary at x = 0.4, with minimum impurity. The calculated average crystallite/grain size of the samples was close to 50 nm at full width at half-maximum of the main peak. The corresponding bonds of the constituent elements were observed by FTIR analysis, which further supports the formation of the local structure. EDS analyses detect all of the elements, their quantities, and compositional homogeneity. SEM data show agglomerated and nearly spherical morphology with an average particle size of about 128 nm. All synthesized ceramic powders revealed thermal stability with trivial mass loss up to investigated high temperatures (1000 οC). The dielectric constant reached its maximum at 38.7 MHz and finally remained constant after 80 MHz for all nanoceramics. Because of the complementary impact of different compositions, the most effective piezoelectric characteristics of d 33 = 136 pCN–1, P r = 8.6 pCN–1 cm–2, and k p = 11% at 30 °C were attained at x = 0.4 content for 0.4BiCaTi–0.6BiFeO3 ceramic. The measured magnetic hysteresis data (M–H curve) showed a weak ferromagnetic nature with the highest moment of ∼0.23 emu/g for 0.4BiCaTi–0.6BiFeO3, and other samples exhibited negligible ferromagnetic to diamagnetic transition. The optical response study shows that the 0.4BiMgTi–0.6BiFeO3 sample yielded the maximal transmittance (50%), whereas the 0.4BiCaTi–0.6BiFeO3 compound exhibited the highest refractive index. The calculated large band gap shows a high insulating or dielectric nature. Our findings demonstrate that the BiM2+Ti–BiFeO3 system, which was fabricated using a low-temperature hydrothermal technique, is an excellent lead-free piezoelectric and multiferroic nanoceramic.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsomega.3c08072</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9420-4335</orcidid><orcidid>https://orcid.org/0000-0002-6761-3042</orcidid><orcidid>https://orcid.org/0000-0003-4595-6367</orcidid><orcidid>https://orcid.org/0000-0003-3120-6733</orcidid><orcidid>https://orcid.org/0000-0002-2564-0894</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-1343 |
ispartof | ACS omega, 2024-02, Vol.9 (8), p.9147-9160 |
issn | 2470-1343 2470-1343 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6f759e1082ed46ebab2f8bd723484f6e |
source | Open Access: PubMed Central; American Chemical Society (ACS) Open Access |
title | Hydrothermal Synthesis, Phase Analysis, and Magneto-Electronic Characterizations of Lead-Free Ferroelectric BM2+(Zn, Ca, Mg)T–BFO System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Synthesis,%20Phase%20Analysis,%20and%20Magneto-Electronic%20Characterizations%20of%20Lead-Free%20Ferroelectric%20BM2+(Zn,%20Ca,%20Mg)T%E2%80%93BFO%20System&rft.jtitle=ACS%20omega&rft.au=Hossain,%20K.%20Monower&rft.date=2024-02-27&rft.volume=9&rft.issue=8&rft.spage=9147&rft.epage=9160&rft.pages=9147-9160&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.3c08072&rft_dat=%3Cproquest_doaj_%3E2937338231%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a263t-aabdf4cf144b0331fcaa6c900a6fefcb9d40c497c8ce9cf0df67ce38bcde894a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937338231&rft_id=info:pmid/&rfr_iscdi=true |