Loading…

Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model

The mass spectrum of different meson particles is generated using an effective Lagrangian of the extended linear-sigma model (eLSM) for scalar and pseudoscalar meson fields and quark flavors, up, down, strange, and charm. Analytical formulas for the masses of scalar, pseudoscalar, vector, and axialv...

Full description

Saved in:
Bibliographic Details
Published in:Particles 2024-09, Vol.7 (3), p.560-575
Main Authors: Ahmadov, Azar I., Alshehri, Azzah A., Tawfik, Abdel Nasser
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mass spectrum of different meson particles is generated using an effective Lagrangian of the extended linear-sigma model (eLSM) for scalar and pseudoscalar meson fields and quark flavors, up, down, strange, and charm. Analytical formulas for the masses of scalar, pseudoscalar, vector, and axialvector meson states are derived assuming global chiral symmetry. The various eLSM parameters are analytically deduced and numerically computed. This enables accurate estimations of the masses of sixteen noncharmed and thirteen charmed meson states at vanishing temperature. The comparison of these results to a recent compilation of the particle data group (PDG) allows us to draw the conclusion that the masses of sixteen noncharmed and thirteen charmed meson states calculated in the eLSM are in good agreement with the PDG. This shows that the eLSM, with its configurations and parameters, is an effective theoretical framework for determining the mass spectra of various noncharmed and charmed meson states, particularly at vanishing temperature.
ISSN:2571-712X
2571-712X
DOI:10.3390/particles7030031