Loading…

Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome

The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic chal...

Full description

Saved in:
Bibliographic Details
Published in:Human genomics 2017-07, Vol.11 (1), p.16-16, Article 16
Main Authors: Helm, Benjamin M, Willer, Jason R, Sadeghpour, Azita, Golzio, Christelle, Crouch, Eric, Vergano, Samantha Schrier, Katsanis, Nicholas, Davis, Erica E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63
cites cdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63
container_end_page 16
container_issue 1
container_start_page 16
container_title Human genomics
container_volume 11
creator Helm, Benjamin M
Willer, Jason R
Sadeghpour, Azita
Golzio, Christelle
Crouch, Eric
Vergano, Samantha Schrier
Katsanis, Nicholas
Davis, Erica E
description The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.
doi_str_mv 10.1186/s40246-017-0111-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6faf41debfe14c3ab19a3ff6ca1ee35e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6faf41debfe14c3ab19a3ff6ca1ee35e</doaj_id><sourcerecordid>1921127645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEoqXwAFyQJS7lEMjE_-ILUlVRutIikChny7EnXS9JvNhJpeUBeG4ctlRtD5Y99m8-j8dfUbyG6j1AIz4kVtVMlBXIPABK9aQ4BiZVKalgT--tj4oXKW2rigKV7HlxVDeyZlTJ4-LPNxMnb3oyj35nIo5TXvsUXB7DnoSO2E0MQ8gREhAZG0z6mYghDnucMPowJ9JmhR57b8kwT2byYSR-JKuLK2AVmTZmItbMCRP5Yvz4G2P53fTOj4Gk_eiyPL4snnWmT_jqdj4pflx8ujq_LNdfP6_Oz9al5byZSkbB1FK1quVCsqpFaIEJ5ywKxjumrOMgRSu5QNVIpoB3zubAOis4dYKeFKuDrgtmq3fRDybudTBe_9sI8Vov_bA9atGZjoHDtkNglpoWlKFdJ6wBRMoxa308aO3mdsBcwzhF0z8QfXgy-o2-Djea5yKlgizw7iCweZR2ebbWy15FReaa5mZhT28vi-HXjGnSg08W-96MmH9Ag6oBapnbkNG3j9BtmOOY27pQXNVC1FWm4EDZGFKK2N1VAJVe3KUP7tLZXXpxl1Y55839F99l_LcT_Qs9PszT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925926620</pqid></control><display><type>article</type><title>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Helm, Benjamin M ; Willer, Jason R ; Sadeghpour, Azita ; Golzio, Christelle ; Crouch, Eric ; Vergano, Samantha Schrier ; Katsanis, Nicholas ; Davis, Erica E</creator><creatorcontrib>Helm, Benjamin M ; Willer, Jason R ; Sadeghpour, Azita ; Golzio, Christelle ; Crouch, Eric ; Vergano, Samantha Schrier ; Katsanis, Nicholas ; Davis, Erica E</creatorcontrib><description>The ciliopathies represent an umbrella group of &gt;50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G&gt;A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.</description><identifier>ISSN: 1479-7364</identifier><identifier>ISSN: 1473-9542</identifier><identifier>EISSN: 1479-7364</identifier><identifier>DOI: 10.1186/s40246-017-0111-9</identifier><identifier>PMID: 28724397</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Age ; Animals ; B-Lymphocytes - metabolism ; B-Lymphocytes - pathology ; Cardiovascular disease ; Carrier Proteins - genetics ; Cells, Cultured ; Cerebellar Ataxia - genetics ; Cerebellar Ataxia - pathology ; Child, Preschool ; Chromosome 16 ; Chromosomes, Human, Pair 16 ; Complementation ; Conorenal dysplasia ; DNA microarrays ; Etiology ; Exons ; Family medical history ; Female ; Gene dosage ; Genes ; Genetics ; Genomes ; Genotype &amp; phenotype ; Heterodisomy ; Homozygote ; Humans ; Intraflagellar transport ; Kidneys ; Life Sciences ; Male ; Meiosis ; Mutation ; Mutation, Missense ; Nonsense mutation ; Pedigree ; Phenotype ; Phenotyping ; Primary Research ; Protein transport ; Retina ; Retinitis Pigmentosa - genetics ; Retinitis Pigmentosa - pathology ; Single-nucleotide polymorphism ; Skeletal ciliopathy ; Splicing ; Structure-function relationships ; Transcription ; Uniparental Disomy ; Whole exome sequencing ; Zebrafish ; Zebrafish - metabolism</subject><ispartof>Human genomics, 2017-07, Vol.11 (1), p.16-16, Article 16</ispartof><rights>Copyright BioMed Central 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</citedby><cites>FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</cites><orcidid>0000-0002-2480-0171 ; 0000-0002-2412-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1925926620/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1925926620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28724397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03679188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Helm, Benjamin M</creatorcontrib><creatorcontrib>Willer, Jason R</creatorcontrib><creatorcontrib>Sadeghpour, Azita</creatorcontrib><creatorcontrib>Golzio, Christelle</creatorcontrib><creatorcontrib>Crouch, Eric</creatorcontrib><creatorcontrib>Vergano, Samantha Schrier</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Davis, Erica E</creatorcontrib><title>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</title><title>Human genomics</title><addtitle>Hum Genomics</addtitle><description>The ciliopathies represent an umbrella group of &gt;50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G&gt;A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.</description><subject>Age</subject><subject>Animals</subject><subject>B-Lymphocytes - metabolism</subject><subject>B-Lymphocytes - pathology</subject><subject>Cardiovascular disease</subject><subject>Carrier Proteins - genetics</subject><subject>Cells, Cultured</subject><subject>Cerebellar Ataxia - genetics</subject><subject>Cerebellar Ataxia - pathology</subject><subject>Child, Preschool</subject><subject>Chromosome 16</subject><subject>Chromosomes, Human, Pair 16</subject><subject>Complementation</subject><subject>Conorenal dysplasia</subject><subject>DNA microarrays</subject><subject>Etiology</subject><subject>Exons</subject><subject>Family medical history</subject><subject>Female</subject><subject>Gene dosage</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Heterodisomy</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Intraflagellar transport</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Meiosis</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Nonsense mutation</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>Primary Research</subject><subject>Protein transport</subject><subject>Retina</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinitis Pigmentosa - pathology</subject><subject>Single-nucleotide polymorphism</subject><subject>Skeletal ciliopathy</subject><subject>Splicing</subject><subject>Structure-function relationships</subject><subject>Transcription</subject><subject>Uniparental Disomy</subject><subject>Whole exome sequencing</subject><subject>Zebrafish</subject><subject>Zebrafish - metabolism</subject><issn>1479-7364</issn><issn>1473-9542</issn><issn>1479-7364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9u1DAQxiMEoqXwAFyQJS7lEMjE_-ILUlVRutIikChny7EnXS9JvNhJpeUBeG4ctlRtD5Y99m8-j8dfUbyG6j1AIz4kVtVMlBXIPABK9aQ4BiZVKalgT--tj4oXKW2rigKV7HlxVDeyZlTJ4-LPNxMnb3oyj35nIo5TXvsUXB7DnoSO2E0MQ8gREhAZG0z6mYghDnucMPowJ9JmhR57b8kwT2byYSR-JKuLK2AVmTZmItbMCRP5Yvz4G2P53fTOj4Gk_eiyPL4snnWmT_jqdj4pflx8ujq_LNdfP6_Oz9al5byZSkbB1FK1quVCsqpFaIEJ5ywKxjumrOMgRSu5QNVIpoB3zubAOis4dYKeFKuDrgtmq3fRDybudTBe_9sI8Vov_bA9atGZjoHDtkNglpoWlKFdJ6wBRMoxa308aO3mdsBcwzhF0z8QfXgy-o2-Djea5yKlgizw7iCweZR2ebbWy15FReaa5mZhT28vi-HXjGnSg08W-96MmH9Ag6oBapnbkNG3j9BtmOOY27pQXNVC1FWm4EDZGFKK2N1VAJVe3KUP7tLZXXpxl1Y55839F99l_LcT_Qs9PszT</recordid><startdate>20170719</startdate><enddate>20170719</enddate><creator>Helm, Benjamin M</creator><creator>Willer, Jason R</creator><creator>Sadeghpour, Azita</creator><creator>Golzio, Christelle</creator><creator>Crouch, Eric</creator><creator>Vergano, Samantha Schrier</creator><creator>Katsanis, Nicholas</creator><creator>Davis, Erica E</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2480-0171</orcidid><orcidid>https://orcid.org/0000-0002-2412-8397</orcidid></search><sort><creationdate>20170719</creationdate><title>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</title><author>Helm, Benjamin M ; Willer, Jason R ; Sadeghpour, Azita ; Golzio, Christelle ; Crouch, Eric ; Vergano, Samantha Schrier ; Katsanis, Nicholas ; Davis, Erica E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Animals</topic><topic>B-Lymphocytes - metabolism</topic><topic>B-Lymphocytes - pathology</topic><topic>Cardiovascular disease</topic><topic>Carrier Proteins - genetics</topic><topic>Cells, Cultured</topic><topic>Cerebellar Ataxia - genetics</topic><topic>Cerebellar Ataxia - pathology</topic><topic>Child, Preschool</topic><topic>Chromosome 16</topic><topic>Chromosomes, Human, Pair 16</topic><topic>Complementation</topic><topic>Conorenal dysplasia</topic><topic>DNA microarrays</topic><topic>Etiology</topic><topic>Exons</topic><topic>Family medical history</topic><topic>Female</topic><topic>Gene dosage</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Heterodisomy</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Intraflagellar transport</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Meiosis</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Nonsense mutation</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>Primary Research</topic><topic>Protein transport</topic><topic>Retina</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinitis Pigmentosa - pathology</topic><topic>Single-nucleotide polymorphism</topic><topic>Skeletal ciliopathy</topic><topic>Splicing</topic><topic>Structure-function relationships</topic><topic>Transcription</topic><topic>Uniparental Disomy</topic><topic>Whole exome sequencing</topic><topic>Zebrafish</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helm, Benjamin M</creatorcontrib><creatorcontrib>Willer, Jason R</creatorcontrib><creatorcontrib>Sadeghpour, Azita</creatorcontrib><creatorcontrib>Golzio, Christelle</creatorcontrib><creatorcontrib>Crouch, Eric</creatorcontrib><creatorcontrib>Vergano, Samantha Schrier</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Davis, Erica E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Human genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helm, Benjamin M</au><au>Willer, Jason R</au><au>Sadeghpour, Azita</au><au>Golzio, Christelle</au><au>Crouch, Eric</au><au>Vergano, Samantha Schrier</au><au>Katsanis, Nicholas</au><au>Davis, Erica E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</atitle><jtitle>Human genomics</jtitle><addtitle>Hum Genomics</addtitle><date>2017-07-19</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>16</spage><epage>16</epage><pages>16-16</pages><artnum>16</artnum><issn>1479-7364</issn><issn>1473-9542</issn><eissn>1479-7364</eissn><abstract>The ciliopathies represent an umbrella group of &gt;50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G&gt;A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>28724397</pmid><doi>10.1186/s40246-017-0111-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2480-0171</orcidid><orcidid>https://orcid.org/0000-0002-2412-8397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1479-7364
ispartof Human genomics, 2017-07, Vol.11 (1), p.16-16, Article 16
issn 1479-7364
1473-9542
1479-7364
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6faf41debfe14c3ab19a3ff6ca1ee35e
source Publicly Available Content Database; PubMed Central
subjects Age
Animals
B-Lymphocytes - metabolism
B-Lymphocytes - pathology
Cardiovascular disease
Carrier Proteins - genetics
Cells, Cultured
Cerebellar Ataxia - genetics
Cerebellar Ataxia - pathology
Child, Preschool
Chromosome 16
Chromosomes, Human, Pair 16
Complementation
Conorenal dysplasia
DNA microarrays
Etiology
Exons
Family medical history
Female
Gene dosage
Genes
Genetics
Genomes
Genotype & phenotype
Heterodisomy
Homozygote
Humans
Intraflagellar transport
Kidneys
Life Sciences
Male
Meiosis
Mutation
Mutation, Missense
Nonsense mutation
Pedigree
Phenotype
Phenotyping
Primary Research
Protein transport
Retina
Retinitis Pigmentosa - genetics
Retinitis Pigmentosa - pathology
Single-nucleotide polymorphism
Skeletal ciliopathy
Splicing
Structure-function relationships
Transcription
Uniparental Disomy
Whole exome sequencing
Zebrafish
Zebrafish - metabolism
title Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20uniparental%20isodisomy%20of%20chromosome%2016%20unmasks%20a%20deleterious%20biallelic%20mutation%20in%20IFT140%20that%20causes%20Mainzer-Saldino%20syndrome&rft.jtitle=Human%20genomics&rft.au=Helm,%20Benjamin%20M&rft.date=2017-07-19&rft.volume=11&rft.issue=1&rft.spage=16&rft.epage=16&rft.pages=16-16&rft.artnum=16&rft.issn=1479-7364&rft.eissn=1479-7364&rft_id=info:doi/10.1186/s40246-017-0111-9&rft_dat=%3Cproquest_doaj_%3E1921127645%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925926620&rft_id=info:pmid/28724397&rfr_iscdi=true