Loading…
Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome
The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic chal...
Saved in:
Published in: | Human genomics 2017-07, Vol.11 (1), p.16-16, Article 16 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 16 |
container_title | Human genomics |
container_volume | 11 |
creator | Helm, Benjamin M Willer, Jason R Sadeghpour, Azita Golzio, Christelle Crouch, Eric Vergano, Samantha Schrier Katsanis, Nicholas Davis, Erica E |
description | The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings.
Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete.
Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder. |
doi_str_mv | 10.1186/s40246-017-0111-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6faf41debfe14c3ab19a3ff6ca1ee35e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6faf41debfe14c3ab19a3ff6ca1ee35e</doaj_id><sourcerecordid>1921127645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEoqXwAFyQJS7lEMjE_-ILUlVRutIikChny7EnXS9JvNhJpeUBeG4ctlRtD5Y99m8-j8dfUbyG6j1AIz4kVtVMlBXIPABK9aQ4BiZVKalgT--tj4oXKW2rigKV7HlxVDeyZlTJ4-LPNxMnb3oyj35nIo5TXvsUXB7DnoSO2E0MQ8gREhAZG0z6mYghDnucMPowJ9JmhR57b8kwT2byYSR-JKuLK2AVmTZmItbMCRP5Yvz4G2P53fTOj4Gk_eiyPL4snnWmT_jqdj4pflx8ujq_LNdfP6_Oz9al5byZSkbB1FK1quVCsqpFaIEJ5ywKxjumrOMgRSu5QNVIpoB3zubAOis4dYKeFKuDrgtmq3fRDybudTBe_9sI8Vov_bA9atGZjoHDtkNglpoWlKFdJ6wBRMoxa308aO3mdsBcwzhF0z8QfXgy-o2-Djea5yKlgizw7iCweZR2ebbWy15FReaa5mZhT28vi-HXjGnSg08W-96MmH9Ag6oBapnbkNG3j9BtmOOY27pQXNVC1FWm4EDZGFKK2N1VAJVe3KUP7tLZXXpxl1Y55839F99l_LcT_Qs9PszT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925926620</pqid></control><display><type>article</type><title>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Helm, Benjamin M ; Willer, Jason R ; Sadeghpour, Azita ; Golzio, Christelle ; Crouch, Eric ; Vergano, Samantha Schrier ; Katsanis, Nicholas ; Davis, Erica E</creator><creatorcontrib>Helm, Benjamin M ; Willer, Jason R ; Sadeghpour, Azita ; Golzio, Christelle ; Crouch, Eric ; Vergano, Samantha Schrier ; Katsanis, Nicholas ; Davis, Erica E</creatorcontrib><description>The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings.
Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete.
Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.</description><identifier>ISSN: 1479-7364</identifier><identifier>ISSN: 1473-9542</identifier><identifier>EISSN: 1479-7364</identifier><identifier>DOI: 10.1186/s40246-017-0111-9</identifier><identifier>PMID: 28724397</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Age ; Animals ; B-Lymphocytes - metabolism ; B-Lymphocytes - pathology ; Cardiovascular disease ; Carrier Proteins - genetics ; Cells, Cultured ; Cerebellar Ataxia - genetics ; Cerebellar Ataxia - pathology ; Child, Preschool ; Chromosome 16 ; Chromosomes, Human, Pair 16 ; Complementation ; Conorenal dysplasia ; DNA microarrays ; Etiology ; Exons ; Family medical history ; Female ; Gene dosage ; Genes ; Genetics ; Genomes ; Genotype & phenotype ; Heterodisomy ; Homozygote ; Humans ; Intraflagellar transport ; Kidneys ; Life Sciences ; Male ; Meiosis ; Mutation ; Mutation, Missense ; Nonsense mutation ; Pedigree ; Phenotype ; Phenotyping ; Primary Research ; Protein transport ; Retina ; Retinitis Pigmentosa - genetics ; Retinitis Pigmentosa - pathology ; Single-nucleotide polymorphism ; Skeletal ciliopathy ; Splicing ; Structure-function relationships ; Transcription ; Uniparental Disomy ; Whole exome sequencing ; Zebrafish ; Zebrafish - metabolism</subject><ispartof>Human genomics, 2017-07, Vol.11 (1), p.16-16, Article 16</ispartof><rights>Copyright BioMed Central 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</citedby><cites>FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</cites><orcidid>0000-0002-2480-0171 ; 0000-0002-2412-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1925926620/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1925926620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28724397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03679188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Helm, Benjamin M</creatorcontrib><creatorcontrib>Willer, Jason R</creatorcontrib><creatorcontrib>Sadeghpour, Azita</creatorcontrib><creatorcontrib>Golzio, Christelle</creatorcontrib><creatorcontrib>Crouch, Eric</creatorcontrib><creatorcontrib>Vergano, Samantha Schrier</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Davis, Erica E</creatorcontrib><title>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</title><title>Human genomics</title><addtitle>Hum Genomics</addtitle><description>The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings.
Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete.
Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.</description><subject>Age</subject><subject>Animals</subject><subject>B-Lymphocytes - metabolism</subject><subject>B-Lymphocytes - pathology</subject><subject>Cardiovascular disease</subject><subject>Carrier Proteins - genetics</subject><subject>Cells, Cultured</subject><subject>Cerebellar Ataxia - genetics</subject><subject>Cerebellar Ataxia - pathology</subject><subject>Child, Preschool</subject><subject>Chromosome 16</subject><subject>Chromosomes, Human, Pair 16</subject><subject>Complementation</subject><subject>Conorenal dysplasia</subject><subject>DNA microarrays</subject><subject>Etiology</subject><subject>Exons</subject><subject>Family medical history</subject><subject>Female</subject><subject>Gene dosage</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Heterodisomy</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Intraflagellar transport</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Meiosis</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Nonsense mutation</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>Primary Research</subject><subject>Protein transport</subject><subject>Retina</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinitis Pigmentosa - pathology</subject><subject>Single-nucleotide polymorphism</subject><subject>Skeletal ciliopathy</subject><subject>Splicing</subject><subject>Structure-function relationships</subject><subject>Transcription</subject><subject>Uniparental Disomy</subject><subject>Whole exome sequencing</subject><subject>Zebrafish</subject><subject>Zebrafish - metabolism</subject><issn>1479-7364</issn><issn>1473-9542</issn><issn>1479-7364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9u1DAQxiMEoqXwAFyQJS7lEMjE_-ILUlVRutIikChny7EnXS9JvNhJpeUBeG4ctlRtD5Y99m8-j8dfUbyG6j1AIz4kVtVMlBXIPABK9aQ4BiZVKalgT--tj4oXKW2rigKV7HlxVDeyZlTJ4-LPNxMnb3oyj35nIo5TXvsUXB7DnoSO2E0MQ8gREhAZG0z6mYghDnucMPowJ9JmhR57b8kwT2byYSR-JKuLK2AVmTZmItbMCRP5Yvz4G2P53fTOj4Gk_eiyPL4snnWmT_jqdj4pflx8ujq_LNdfP6_Oz9al5byZSkbB1FK1quVCsqpFaIEJ5ywKxjumrOMgRSu5QNVIpoB3zubAOis4dYKeFKuDrgtmq3fRDybudTBe_9sI8Vov_bA9atGZjoHDtkNglpoWlKFdJ6wBRMoxa308aO3mdsBcwzhF0z8QfXgy-o2-Djea5yKlgizw7iCweZR2ebbWy15FReaa5mZhT28vi-HXjGnSg08W-96MmH9Ag6oBapnbkNG3j9BtmOOY27pQXNVC1FWm4EDZGFKK2N1VAJVe3KUP7tLZXXpxl1Y55839F99l_LcT_Qs9PszT</recordid><startdate>20170719</startdate><enddate>20170719</enddate><creator>Helm, Benjamin M</creator><creator>Willer, Jason R</creator><creator>Sadeghpour, Azita</creator><creator>Golzio, Christelle</creator><creator>Crouch, Eric</creator><creator>Vergano, Samantha Schrier</creator><creator>Katsanis, Nicholas</creator><creator>Davis, Erica E</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2480-0171</orcidid><orcidid>https://orcid.org/0000-0002-2412-8397</orcidid></search><sort><creationdate>20170719</creationdate><title>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</title><author>Helm, Benjamin M ; Willer, Jason R ; Sadeghpour, Azita ; Golzio, Christelle ; Crouch, Eric ; Vergano, Samantha Schrier ; Katsanis, Nicholas ; Davis, Erica E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Animals</topic><topic>B-Lymphocytes - metabolism</topic><topic>B-Lymphocytes - pathology</topic><topic>Cardiovascular disease</topic><topic>Carrier Proteins - genetics</topic><topic>Cells, Cultured</topic><topic>Cerebellar Ataxia - genetics</topic><topic>Cerebellar Ataxia - pathology</topic><topic>Child, Preschool</topic><topic>Chromosome 16</topic><topic>Chromosomes, Human, Pair 16</topic><topic>Complementation</topic><topic>Conorenal dysplasia</topic><topic>DNA microarrays</topic><topic>Etiology</topic><topic>Exons</topic><topic>Family medical history</topic><topic>Female</topic><topic>Gene dosage</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Heterodisomy</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Intraflagellar transport</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Meiosis</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Nonsense mutation</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>Primary Research</topic><topic>Protein transport</topic><topic>Retina</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinitis Pigmentosa - pathology</topic><topic>Single-nucleotide polymorphism</topic><topic>Skeletal ciliopathy</topic><topic>Splicing</topic><topic>Structure-function relationships</topic><topic>Transcription</topic><topic>Uniparental Disomy</topic><topic>Whole exome sequencing</topic><topic>Zebrafish</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helm, Benjamin M</creatorcontrib><creatorcontrib>Willer, Jason R</creatorcontrib><creatorcontrib>Sadeghpour, Azita</creatorcontrib><creatorcontrib>Golzio, Christelle</creatorcontrib><creatorcontrib>Crouch, Eric</creatorcontrib><creatorcontrib>Vergano, Samantha Schrier</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Davis, Erica E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Human genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helm, Benjamin M</au><au>Willer, Jason R</au><au>Sadeghpour, Azita</au><au>Golzio, Christelle</au><au>Crouch, Eric</au><au>Vergano, Samantha Schrier</au><au>Katsanis, Nicholas</au><au>Davis, Erica E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome</atitle><jtitle>Human genomics</jtitle><addtitle>Hum Genomics</addtitle><date>2017-07-19</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>16</spage><epage>16</epage><pages>16-16</pages><artnum>16</artnum><issn>1479-7364</issn><issn>1473-9542</issn><eissn>1479-7364</eissn><abstract>The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings.
Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete.
Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>28724397</pmid><doi>10.1186/s40246-017-0111-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2480-0171</orcidid><orcidid>https://orcid.org/0000-0002-2412-8397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-7364 |
ispartof | Human genomics, 2017-07, Vol.11 (1), p.16-16, Article 16 |
issn | 1479-7364 1473-9542 1479-7364 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6faf41debfe14c3ab19a3ff6ca1ee35e |
source | Publicly Available Content Database; PubMed Central |
subjects | Age Animals B-Lymphocytes - metabolism B-Lymphocytes - pathology Cardiovascular disease Carrier Proteins - genetics Cells, Cultured Cerebellar Ataxia - genetics Cerebellar Ataxia - pathology Child, Preschool Chromosome 16 Chromosomes, Human, Pair 16 Complementation Conorenal dysplasia DNA microarrays Etiology Exons Family medical history Female Gene dosage Genes Genetics Genomes Genotype & phenotype Heterodisomy Homozygote Humans Intraflagellar transport Kidneys Life Sciences Male Meiosis Mutation Mutation, Missense Nonsense mutation Pedigree Phenotype Phenotyping Primary Research Protein transport Retina Retinitis Pigmentosa - genetics Retinitis Pigmentosa - pathology Single-nucleotide polymorphism Skeletal ciliopathy Splicing Structure-function relationships Transcription Uniparental Disomy Whole exome sequencing Zebrafish Zebrafish - metabolism |
title | Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20uniparental%20isodisomy%20of%20chromosome%2016%20unmasks%20a%20deleterious%20biallelic%20mutation%20in%20IFT140%20that%20causes%20Mainzer-Saldino%20syndrome&rft.jtitle=Human%20genomics&rft.au=Helm,%20Benjamin%20M&rft.date=2017-07-19&rft.volume=11&rft.issue=1&rft.spage=16&rft.epage=16&rft.pages=16-16&rft.artnum=16&rft.issn=1479-7364&rft.eissn=1479-7364&rft_id=info:doi/10.1186/s40246-017-0111-9&rft_dat=%3Cproquest_doaj_%3E1921127645%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-431a279b9b56740be1b146ddce645f49cd5176b756e9874915fdc56ecdc653d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925926620&rft_id=info:pmid/28724397&rfr_iscdi=true |