Loading…
Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning
Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fr...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-04, Vol.23 (8), p.3868 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3 |
container_end_page | |
container_issue | 8 |
container_start_page | 3868 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Neupane, Chiranjivi Pereira, Maisa Koirala, Anand Walsh, Kerry B |
description | Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated. |
doi_str_mv | 10.3390/s23083868 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6fca92440462469795d2105c1972c9da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747539627</galeid><doaj_id>oai_doaj_org_article_6fca92440462469795d2105c1972c9da</doaj_id><sourcerecordid>A747539627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</originalsourceid><addsrcrecordid>eNpdkktvEzEQgFcIRB9w4A8gS1zgkOLX-sEFRYFCpaBKFLhajj2bONrYqb3bqvx6HFKiFvlga_zNZ89omuYVwWeMafy-UIYVU0I9aY4Jp3yiKMVPH5yPmpNS1hhTxph63hwxSUgNy-Pm6jyPYUBX4XeISxQiusxuZbP_gKboO9wEuEVdThs0s33YQkZDQt-sW4UI6FcoIUV0G4YV-gSwRXOwOVbNi-ZZZ_sCL-_30-bn-ecfs6-T-eWXi9l0PnEt1sOEeN8J4jVTC--Ip5TTzhFllSC7Q-cYERwzjFuv-ELV8hTH1EvlGdiFB3baXOy9Ptm12eawsfnOJBvM30DKS2PzEFwPRnTOaso55oJyoaVuPSW4dURL6rS31fVx79qOiw14B3HItn8kfXwTw8os040hmHBe-1kNb-8NOV2PUAazCcVB39sIaSyGKiw11kqLir75D12nMcfaqx0lWiVbwit1tqeWtlYQYpfqw64uD5vgUoQu1PhUctkyLaisCe_2CS6nUjJ0h-8TbHaDYg6DUtnXD-s9kP8mg_0Bl-y1LQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806587514</pqid></control><display><type>article</type><title>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Neupane, Chiranjivi ; Pereira, Maisa ; Koirala, Anand ; Walsh, Kerry B</creator><creatorcontrib>Neupane, Chiranjivi ; Pereira, Maisa ; Koirala, Anand ; Walsh, Kerry B</creatorcontrib><description>Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23083868</identifier><identifier>PMID: 37112207</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cellular telephones ; Cultivars ; Deep Learning ; Depth measurement ; estimation ; Fruit ; fruit sizing ; Fruits ; Growth models ; image segmentation ; Machine vision ; Market planning ; measurement ; precision horticulture ; Review ; Sampling error ; Sizing ; Trees ; Vegetables ; Vision systems</subject><ispartof>Sensors (Basel, Switzerland), 2023-04, Vol.23 (8), p.3868</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</citedby><cites>FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</cites><orcidid>0000-0001-7376-2143 ; 0000-0001-8383-1456 ; 0000-0002-3033-8622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806587514/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806587514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37112207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neupane, Chiranjivi</creatorcontrib><creatorcontrib>Pereira, Maisa</creatorcontrib><creatorcontrib>Koirala, Anand</creatorcontrib><creatorcontrib>Walsh, Kerry B</creatorcontrib><title>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.</description><subject>Cellular telephones</subject><subject>Cultivars</subject><subject>Deep Learning</subject><subject>Depth measurement</subject><subject>estimation</subject><subject>Fruit</subject><subject>fruit sizing</subject><subject>Fruits</subject><subject>Growth models</subject><subject>image segmentation</subject><subject>Machine vision</subject><subject>Market planning</subject><subject>measurement</subject><subject>precision horticulture</subject><subject>Review</subject><subject>Sampling error</subject><subject>Sizing</subject><subject>Trees</subject><subject>Vegetables</subject><subject>Vision systems</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEQgFcIRB9w4A8gS1zgkOLX-sEFRYFCpaBKFLhajj2bONrYqb3bqvx6HFKiFvlga_zNZ89omuYVwWeMafy-UIYVU0I9aY4Jp3yiKMVPH5yPmpNS1hhTxph63hwxSUgNy-Pm6jyPYUBX4XeISxQiusxuZbP_gKboO9wEuEVdThs0s33YQkZDQt-sW4UI6FcoIUV0G4YV-gSwRXOwOVbNi-ZZZ_sCL-_30-bn-ecfs6-T-eWXi9l0PnEt1sOEeN8J4jVTC--Ip5TTzhFllSC7Q-cYERwzjFuv-ELV8hTH1EvlGdiFB3baXOy9Ptm12eawsfnOJBvM30DKS2PzEFwPRnTOaso55oJyoaVuPSW4dURL6rS31fVx79qOiw14B3HItn8kfXwTw8os040hmHBe-1kNb-8NOV2PUAazCcVB39sIaSyGKiw11kqLir75D12nMcfaqx0lWiVbwit1tqeWtlYQYpfqw64uD5vgUoQu1PhUctkyLaisCe_2CS6nUjJ0h-8TbHaDYg6DUtnXD-s9kP8mg_0Bl-y1LQ</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Neupane, Chiranjivi</creator><creator>Pereira, Maisa</creator><creator>Koirala, Anand</creator><creator>Walsh, Kerry B</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7376-2143</orcidid><orcidid>https://orcid.org/0000-0001-8383-1456</orcidid><orcidid>https://orcid.org/0000-0002-3033-8622</orcidid></search><sort><creationdate>20230410</creationdate><title>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</title><author>Neupane, Chiranjivi ; Pereira, Maisa ; Koirala, Anand ; Walsh, Kerry B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cellular telephones</topic><topic>Cultivars</topic><topic>Deep Learning</topic><topic>Depth measurement</topic><topic>estimation</topic><topic>Fruit</topic><topic>fruit sizing</topic><topic>Fruits</topic><topic>Growth models</topic><topic>image segmentation</topic><topic>Machine vision</topic><topic>Market planning</topic><topic>measurement</topic><topic>precision horticulture</topic><topic>Review</topic><topic>Sampling error</topic><topic>Sizing</topic><topic>Trees</topic><topic>Vegetables</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neupane, Chiranjivi</creatorcontrib><creatorcontrib>Pereira, Maisa</creatorcontrib><creatorcontrib>Koirala, Anand</creatorcontrib><creatorcontrib>Walsh, Kerry B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neupane, Chiranjivi</au><au>Pereira, Maisa</au><au>Koirala, Anand</au><au>Walsh, Kerry B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>23</volume><issue>8</issue><spage>3868</spage><pages>3868-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37112207</pmid><doi>10.3390/s23083868</doi><orcidid>https://orcid.org/0000-0001-7376-2143</orcidid><orcidid>https://orcid.org/0000-0001-8383-1456</orcidid><orcidid>https://orcid.org/0000-0002-3033-8622</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-04, Vol.23 (8), p.3868 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6fca92440462469795d2105c1972c9da |
source | Publicly Available Content Database; PubMed Central |
subjects | Cellular telephones Cultivars Deep Learning Depth measurement estimation Fruit fruit sizing Fruits Growth models image segmentation Machine vision Market planning measurement precision horticulture Review Sampling error Sizing Trees Vegetables Vision systems |
title | Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fruit%20Sizing%20in%20Orchard:%20A%20Review%20from%20Caliper%20to%20Machine%20Vision%20with%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Neupane,%20Chiranjivi&rft.date=2023-04-10&rft.volume=23&rft.issue=8&rft.spage=3868&rft.pages=3868-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23083868&rft_dat=%3Cgale_doaj_%3EA747539627%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806587514&rft_id=info:pmid/37112207&rft_galeid=A747539627&rfr_iscdi=true |