Loading…

Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning

Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fr...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-04, Vol.23 (8), p.3868
Main Authors: Neupane, Chiranjivi, Pereira, Maisa, Koirala, Anand, Walsh, Kerry B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3
cites cdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3
container_end_page
container_issue 8
container_start_page 3868
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Neupane, Chiranjivi
Pereira, Maisa
Koirala, Anand
Walsh, Kerry B
description Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.
doi_str_mv 10.3390/s23083868
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6fca92440462469795d2105c1972c9da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747539627</galeid><doaj_id>oai_doaj_org_article_6fca92440462469795d2105c1972c9da</doaj_id><sourcerecordid>A747539627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</originalsourceid><addsrcrecordid>eNpdkktvEzEQgFcIRB9w4A8gS1zgkOLX-sEFRYFCpaBKFLhajj2bONrYqb3bqvx6HFKiFvlga_zNZ89omuYVwWeMafy-UIYVU0I9aY4Jp3yiKMVPH5yPmpNS1hhTxph63hwxSUgNy-Pm6jyPYUBX4XeISxQiusxuZbP_gKboO9wEuEVdThs0s33YQkZDQt-sW4UI6FcoIUV0G4YV-gSwRXOwOVbNi-ZZZ_sCL-_30-bn-ecfs6-T-eWXi9l0PnEt1sOEeN8J4jVTC--Ip5TTzhFllSC7Q-cYERwzjFuv-ELV8hTH1EvlGdiFB3baXOy9Ptm12eawsfnOJBvM30DKS2PzEFwPRnTOaso55oJyoaVuPSW4dURL6rS31fVx79qOiw14B3HItn8kfXwTw8os040hmHBe-1kNb-8NOV2PUAazCcVB39sIaSyGKiw11kqLir75D12nMcfaqx0lWiVbwit1tqeWtlYQYpfqw64uD5vgUoQu1PhUctkyLaisCe_2CS6nUjJ0h-8TbHaDYg6DUtnXD-s9kP8mg_0Bl-y1LQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806587514</pqid></control><display><type>article</type><title>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Neupane, Chiranjivi ; Pereira, Maisa ; Koirala, Anand ; Walsh, Kerry B</creator><creatorcontrib>Neupane, Chiranjivi ; Pereira, Maisa ; Koirala, Anand ; Walsh, Kerry B</creatorcontrib><description>Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23083868</identifier><identifier>PMID: 37112207</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cellular telephones ; Cultivars ; Deep Learning ; Depth measurement ; estimation ; Fruit ; fruit sizing ; Fruits ; Growth models ; image segmentation ; Machine vision ; Market planning ; measurement ; precision horticulture ; Review ; Sampling error ; Sizing ; Trees ; Vegetables ; Vision systems</subject><ispartof>Sensors (Basel, Switzerland), 2023-04, Vol.23 (8), p.3868</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</citedby><cites>FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</cites><orcidid>0000-0001-7376-2143 ; 0000-0001-8383-1456 ; 0000-0002-3033-8622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806587514/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806587514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37112207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neupane, Chiranjivi</creatorcontrib><creatorcontrib>Pereira, Maisa</creatorcontrib><creatorcontrib>Koirala, Anand</creatorcontrib><creatorcontrib>Walsh, Kerry B</creatorcontrib><title>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.</description><subject>Cellular telephones</subject><subject>Cultivars</subject><subject>Deep Learning</subject><subject>Depth measurement</subject><subject>estimation</subject><subject>Fruit</subject><subject>fruit sizing</subject><subject>Fruits</subject><subject>Growth models</subject><subject>image segmentation</subject><subject>Machine vision</subject><subject>Market planning</subject><subject>measurement</subject><subject>precision horticulture</subject><subject>Review</subject><subject>Sampling error</subject><subject>Sizing</subject><subject>Trees</subject><subject>Vegetables</subject><subject>Vision systems</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEQgFcIRB9w4A8gS1zgkOLX-sEFRYFCpaBKFLhajj2bONrYqb3bqvx6HFKiFvlga_zNZ89omuYVwWeMafy-UIYVU0I9aY4Jp3yiKMVPH5yPmpNS1hhTxph63hwxSUgNy-Pm6jyPYUBX4XeISxQiusxuZbP_gKboO9wEuEVdThs0s33YQkZDQt-sW4UI6FcoIUV0G4YV-gSwRXOwOVbNi-ZZZ_sCL-_30-bn-ecfs6-T-eWXi9l0PnEt1sOEeN8J4jVTC--Ip5TTzhFllSC7Q-cYERwzjFuv-ELV8hTH1EvlGdiFB3baXOy9Ptm12eawsfnOJBvM30DKS2PzEFwPRnTOaso55oJyoaVuPSW4dURL6rS31fVx79qOiw14B3HItn8kfXwTw8os040hmHBe-1kNb-8NOV2PUAazCcVB39sIaSyGKiw11kqLir75D12nMcfaqx0lWiVbwit1tqeWtlYQYpfqw64uD5vgUoQu1PhUctkyLaisCe_2CS6nUjJ0h-8TbHaDYg6DUtnXD-s9kP8mg_0Bl-y1LQ</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Neupane, Chiranjivi</creator><creator>Pereira, Maisa</creator><creator>Koirala, Anand</creator><creator>Walsh, Kerry B</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7376-2143</orcidid><orcidid>https://orcid.org/0000-0001-8383-1456</orcidid><orcidid>https://orcid.org/0000-0002-3033-8622</orcidid></search><sort><creationdate>20230410</creationdate><title>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</title><author>Neupane, Chiranjivi ; Pereira, Maisa ; Koirala, Anand ; Walsh, Kerry B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cellular telephones</topic><topic>Cultivars</topic><topic>Deep Learning</topic><topic>Depth measurement</topic><topic>estimation</topic><topic>Fruit</topic><topic>fruit sizing</topic><topic>Fruits</topic><topic>Growth models</topic><topic>image segmentation</topic><topic>Machine vision</topic><topic>Market planning</topic><topic>measurement</topic><topic>precision horticulture</topic><topic>Review</topic><topic>Sampling error</topic><topic>Sizing</topic><topic>Trees</topic><topic>Vegetables</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neupane, Chiranjivi</creatorcontrib><creatorcontrib>Pereira, Maisa</creatorcontrib><creatorcontrib>Koirala, Anand</creatorcontrib><creatorcontrib>Walsh, Kerry B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neupane, Chiranjivi</au><au>Pereira, Maisa</au><au>Koirala, Anand</au><au>Walsh, Kerry B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>23</volume><issue>8</issue><spage>3868</spage><pages>3868-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Forward estimates of harvest load require information on fruit size as well as number. The task of sizing fruit and vegetables has been automated in the packhouse, progressing from mechanical methods to machine vision over the last three decades. This shift is now occurring for size assessment of fruit on trees, i.e., in the orchard. This review focuses on: (i) allometric relationships between fruit weight and lineal dimensions; (ii) measurement of fruit lineal dimensions with traditional tools; (iii) measurement of fruit lineal dimensions with machine vision, with attention to the issues of depth measurement and recognition of occluded fruit; (iv) sampling strategies; and (v) forward prediction of fruit size (at harvest). Commercially available capability for in-orchard fruit sizing is summarized, and further developments of in-orchard fruit sizing by machine vision are anticipated.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37112207</pmid><doi>10.3390/s23083868</doi><orcidid>https://orcid.org/0000-0001-7376-2143</orcidid><orcidid>https://orcid.org/0000-0001-8383-1456</orcidid><orcidid>https://orcid.org/0000-0002-3033-8622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-04, Vol.23 (8), p.3868
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6fca92440462469795d2105c1972c9da
source Publicly Available Content Database; PubMed Central
subjects Cellular telephones
Cultivars
Deep Learning
Depth measurement
estimation
Fruit
fruit sizing
Fruits
Growth models
image segmentation
Machine vision
Market planning
measurement
precision horticulture
Review
Sampling error
Sizing
Trees
Vegetables
Vision systems
title Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fruit%20Sizing%20in%20Orchard:%20A%20Review%20from%20Caliper%20to%20Machine%20Vision%20with%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Neupane,%20Chiranjivi&rft.date=2023-04-10&rft.volume=23&rft.issue=8&rft.spage=3868&rft.pages=3868-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23083868&rft_dat=%3Cgale_doaj_%3EA747539627%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-1ddf61d938bdc1d2242fc18a8612fc1fc316403005d84b88688402d78d3eabde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806587514&rft_id=info:pmid/37112207&rft_galeid=A747539627&rfr_iscdi=true