Loading…
A global monthly climatology of total alkalinity: a neural network approach
Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one...
Saved in:
Published in: | Earth system science data 2019-07, Vol.11 (3), p.1109-1127 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63 |
---|---|
cites | cdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63 |
container_end_page | 1127 |
container_issue | 3 |
container_start_page | 1109 |
container_title | Earth system science data |
container_volume | 11 |
creator | Broullón, Daniel Pérez, Fiz F Velo, Antón Hoppema, Mario Olsen, Are Takahashi, Taro Key, Robert M Tanhua, Toste González-Dávila, Melchor Jeansson, Emil Kozyr, Alex van Heuven, Steven M. A. C |
description | Global climatologies of the seawater CO2 chemistry variables
are necessary to assess the marine carbon cycle in depth. The climatologies
should adequately capture seasonal variability to properly address ocean
acidification and similar issues related to the carbon cycle. Total
alkalinity (AT) is one variable of the seawater CO2 chemistry
system involved in ocean acidification and frequently measured. We used the
Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract
relationships among the drivers of the AT variability and AT
concentration using a neural network (NNGv2) to generate a monthly
climatology. The GLODAPv2 quality-controlled dataset used was modeled by the
NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1.
Validation tests with independent datasets revealed the good generalization
of the network. Data from five ocean time-series stations showed an
acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of
the monthly AT variability in the time series suggests that the NNGv2
is a good candidate to generate a monthly climatology. The climatological
fields of AT were obtained passing through the NNGv2 the World Ocean
Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen
and the computed climatologies of nutrients from the previous ones with a
neural network. The spatiotemporal resolution is set by WOA13:
1∘ × 1∘ in the horizontal, 102 depth levels
(0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m)
temporal resolution. The product is distributed through the data repository
of the Spanish National Research Council (CSIC;
https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019). |
doi_str_mv | 10.5194/essd-11-1109-2019 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6fd60a40b961494a9baa3b9560fcc616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595104334</galeid><doaj_id>oai_doaj_org_article_6fd60a40b961494a9baa3b9560fcc616</doaj_id><sourcerecordid>A595104334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</originalsourceid><addsrcrecordid>eNptkluLFDEQhRtRcF39Ab41-ORD76Y6l0l8GxYvwy4IXp5DdS69me3pjEkGnX9v2hF1QBJIcfLVoQpO07wEcsVBsWuXs-0A6iWq6wmoR80FSCE6ykE8_qd-2jzLeUuIYLDiF83tuh2nOODU7uJc7qdja6awwxKnOB7b6NsSS_3E6QGnMIdyfNNiO7tDquLsyveYHlrc71NEc_-8eeJxyu7F7_ey-fru7ZebD93dx_ebm_VdZzhTpWNSCboamMQeeqs4YyDBCgDKuR88YZISQqyVVFrVU7KiVgxGoe_lIK0T9LLZnHxtxK3epzpvOuqIQf8SYho1phLM5LTwVhBkZFACmGKoBkQ6KC6IN0bA4vXq5FVX-HZwuehtPKS5jq_7XgjFKO_5X2rEahpmH0tCswvZ6DVXHAijlFXq6j9UPdbtgomz86HqZw2vzxoqU9yPMuIhZ735_OmchRNrUsw5Of9ncSB6iYBeIqAB9BIBvUSA_gT_1qDM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266943525</pqid></control><display><type>article</type><title>A global monthly climatology of total alkalinity: a neural network approach</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Broullón, Daniel ; Pérez, Fiz F ; Velo, Antón ; Hoppema, Mario ; Olsen, Are ; Takahashi, Taro ; Key, Robert M ; Tanhua, Toste ; González-Dávila, Melchor ; Jeansson, Emil ; Kozyr, Alex ; van Heuven, Steven M. A. C</creator><creatorcontrib>Broullón, Daniel ; Pérez, Fiz F ; Velo, Antón ; Hoppema, Mario ; Olsen, Are ; Takahashi, Taro ; Key, Robert M ; Tanhua, Toste ; González-Dávila, Melchor ; Jeansson, Emil ; Kozyr, Alex ; van Heuven, Steven M. A. C</creatorcontrib><description>Global climatologies of the seawater CO2 chemistry variables
are necessary to assess the marine carbon cycle in depth. The climatologies
should adequately capture seasonal variability to properly address ocean
acidification and similar issues related to the carbon cycle. Total
alkalinity (AT) is one variable of the seawater CO2 chemistry
system involved in ocean acidification and frequently measured. We used the
Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract
relationships among the drivers of the AT variability and AT
concentration using a neural network (NNGv2) to generate a monthly
climatology. The GLODAPv2 quality-controlled dataset used was modeled by the
NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1.
Validation tests with independent datasets revealed the good generalization
of the network. Data from five ocean time-series stations showed an
acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of
the monthly AT variability in the time series suggests that the NNGv2
is a good candidate to generate a monthly climatology. The climatological
fields of AT were obtained passing through the NNGv2 the World Ocean
Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen
and the computed climatologies of nutrients from the previous ones with a
neural network. The spatiotemporal resolution is set by WOA13:
1∘ × 1∘ in the horizontal, 102 depth levels
(0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m)
temporal resolution. The product is distributed through the data repository
of the Spanish National Research Council (CSIC;
https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).</description><identifier>ISSN: 1866-3516</identifier><identifier>ISSN: 1866-3508</identifier><identifier>EISSN: 1866-3516</identifier><identifier>DOI: 10.5194/essd-11-1109-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Acidification ; Alkalinity ; Artificial neural networks ; Carbon cycle ; Carbon dioxide ; Chemical analysis ; Chemical oceanography ; Chemical properties ; Climate ; Climatology ; Data analysis ; Datasets ; Global climate ; Information management ; International aspects ; Monthly ; Motor vehicle drivers ; Neural networks ; Nutrients ; Ocean acidification ; Oceanic analysis ; Oceanographic atlases ; Oceans ; Organic chemistry ; Oxygen ; Resolution ; Root-mean-square errors ; Salinity ; Seasonal variability ; Seasonal variation ; Seasonal variations ; Seawater ; Seawater alkalinity ; Temporal resolution ; Time series ; Water acidification ; Water analysis</subject><ispartof>Earth system science data, 2019-07, Vol.11 (3), p.1109-1127</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</citedby><cites>FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</cites><orcidid>0000-0002-7598-5700 ; 0000-0003-4836-8974 ; 0000-0002-2326-619X ; 0000-0003-1696-9142 ; 0000-0003-2001-8710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2266943525/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2266943525?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Broullón, Daniel</creatorcontrib><creatorcontrib>Pérez, Fiz F</creatorcontrib><creatorcontrib>Velo, Antón</creatorcontrib><creatorcontrib>Hoppema, Mario</creatorcontrib><creatorcontrib>Olsen, Are</creatorcontrib><creatorcontrib>Takahashi, Taro</creatorcontrib><creatorcontrib>Key, Robert M</creatorcontrib><creatorcontrib>Tanhua, Toste</creatorcontrib><creatorcontrib>González-Dávila, Melchor</creatorcontrib><creatorcontrib>Jeansson, Emil</creatorcontrib><creatorcontrib>Kozyr, Alex</creatorcontrib><creatorcontrib>van Heuven, Steven M. A. C</creatorcontrib><title>A global monthly climatology of total alkalinity: a neural network approach</title><title>Earth system science data</title><description>Global climatologies of the seawater CO2 chemistry variables
are necessary to assess the marine carbon cycle in depth. The climatologies
should adequately capture seasonal variability to properly address ocean
acidification and similar issues related to the carbon cycle. Total
alkalinity (AT) is one variable of the seawater CO2 chemistry
system involved in ocean acidification and frequently measured. We used the
Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract
relationships among the drivers of the AT variability and AT
concentration using a neural network (NNGv2) to generate a monthly
climatology. The GLODAPv2 quality-controlled dataset used was modeled by the
NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1.
Validation tests with independent datasets revealed the good generalization
of the network. Data from five ocean time-series stations showed an
acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of
the monthly AT variability in the time series suggests that the NNGv2
is a good candidate to generate a monthly climatology. The climatological
fields of AT were obtained passing through the NNGv2 the World Ocean
Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen
and the computed climatologies of nutrients from the previous ones with a
neural network. The spatiotemporal resolution is set by WOA13:
1∘ × 1∘ in the horizontal, 102 depth levels
(0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m)
temporal resolution. The product is distributed through the data repository
of the Spanish National Research Council (CSIC;
https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).</description><subject>Acidification</subject><subject>Alkalinity</subject><subject>Artificial neural networks</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Chemical analysis</subject><subject>Chemical oceanography</subject><subject>Chemical properties</subject><subject>Climate</subject><subject>Climatology</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Global climate</subject><subject>Information management</subject><subject>International aspects</subject><subject>Monthly</subject><subject>Motor vehicle drivers</subject><subject>Neural networks</subject><subject>Nutrients</subject><subject>Ocean acidification</subject><subject>Oceanic analysis</subject><subject>Oceanographic atlases</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Salinity</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seawater</subject><subject>Seawater alkalinity</subject><subject>Temporal resolution</subject><subject>Time series</subject><subject>Water acidification</subject><subject>Water analysis</subject><issn>1866-3516</issn><issn>1866-3508</issn><issn>1866-3516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkluLFDEQhRtRcF39Ab41-ORD76Y6l0l8GxYvwy4IXp5DdS69me3pjEkGnX9v2hF1QBJIcfLVoQpO07wEcsVBsWuXs-0A6iWq6wmoR80FSCE6ykE8_qd-2jzLeUuIYLDiF83tuh2nOODU7uJc7qdja6awwxKnOB7b6NsSS_3E6QGnMIdyfNNiO7tDquLsyveYHlrc71NEc_-8eeJxyu7F7_ey-fru7ZebD93dx_ebm_VdZzhTpWNSCboamMQeeqs4YyDBCgDKuR88YZISQqyVVFrVU7KiVgxGoe_lIK0T9LLZnHxtxK3epzpvOuqIQf8SYho1phLM5LTwVhBkZFACmGKoBkQ6KC6IN0bA4vXq5FVX-HZwuehtPKS5jq_7XgjFKO_5X2rEahpmH0tCswvZ6DVXHAijlFXq6j9UPdbtgomz86HqZw2vzxoqU9yPMuIhZ735_OmchRNrUsw5Of9ncSB6iYBeIqAB9BIBvUSA_gT_1qDM</recordid><startdate>20190731</startdate><enddate>20190731</enddate><creator>Broullón, Daniel</creator><creator>Pérez, Fiz F</creator><creator>Velo, Antón</creator><creator>Hoppema, Mario</creator><creator>Olsen, Are</creator><creator>Takahashi, Taro</creator><creator>Key, Robert M</creator><creator>Tanhua, Toste</creator><creator>González-Dávila, Melchor</creator><creator>Jeansson, Emil</creator><creator>Kozyr, Alex</creator><creator>van Heuven, Steven M. A. C</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7598-5700</orcidid><orcidid>https://orcid.org/0000-0003-4836-8974</orcidid><orcidid>https://orcid.org/0000-0002-2326-619X</orcidid><orcidid>https://orcid.org/0000-0003-1696-9142</orcidid><orcidid>https://orcid.org/0000-0003-2001-8710</orcidid></search><sort><creationdate>20190731</creationdate><title>A global monthly climatology of total alkalinity: a neural network approach</title><author>Broullón, Daniel ; Pérez, Fiz F ; Velo, Antón ; Hoppema, Mario ; Olsen, Are ; Takahashi, Taro ; Key, Robert M ; Tanhua, Toste ; González-Dávila, Melchor ; Jeansson, Emil ; Kozyr, Alex ; van Heuven, Steven M. A. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidification</topic><topic>Alkalinity</topic><topic>Artificial neural networks</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Chemical analysis</topic><topic>Chemical oceanography</topic><topic>Chemical properties</topic><topic>Climate</topic><topic>Climatology</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Global climate</topic><topic>Information management</topic><topic>International aspects</topic><topic>Monthly</topic><topic>Motor vehicle drivers</topic><topic>Neural networks</topic><topic>Nutrients</topic><topic>Ocean acidification</topic><topic>Oceanic analysis</topic><topic>Oceanographic atlases</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Salinity</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seawater</topic><topic>Seawater alkalinity</topic><topic>Temporal resolution</topic><topic>Time series</topic><topic>Water acidification</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broullón, Daniel</creatorcontrib><creatorcontrib>Pérez, Fiz F</creatorcontrib><creatorcontrib>Velo, Antón</creatorcontrib><creatorcontrib>Hoppema, Mario</creatorcontrib><creatorcontrib>Olsen, Are</creatorcontrib><creatorcontrib>Takahashi, Taro</creatorcontrib><creatorcontrib>Key, Robert M</creatorcontrib><creatorcontrib>Tanhua, Toste</creatorcontrib><creatorcontrib>González-Dávila, Melchor</creatorcontrib><creatorcontrib>Jeansson, Emil</creatorcontrib><creatorcontrib>Kozyr, Alex</creatorcontrib><creatorcontrib>van Heuven, Steven M. A. C</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system science data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broullón, Daniel</au><au>Pérez, Fiz F</au><au>Velo, Antón</au><au>Hoppema, Mario</au><au>Olsen, Are</au><au>Takahashi, Taro</au><au>Key, Robert M</au><au>Tanhua, Toste</au><au>González-Dávila, Melchor</au><au>Jeansson, Emil</au><au>Kozyr, Alex</au><au>van Heuven, Steven M. A. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global monthly climatology of total alkalinity: a neural network approach</atitle><jtitle>Earth system science data</jtitle><date>2019-07-31</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>1109</spage><epage>1127</epage><pages>1109-1127</pages><issn>1866-3516</issn><issn>1866-3508</issn><eissn>1866-3516</eissn><abstract>Global climatologies of the seawater CO2 chemistry variables
are necessary to assess the marine carbon cycle in depth. The climatologies
should adequately capture seasonal variability to properly address ocean
acidification and similar issues related to the carbon cycle. Total
alkalinity (AT) is one variable of the seawater CO2 chemistry
system involved in ocean acidification and frequently measured. We used the
Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract
relationships among the drivers of the AT variability and AT
concentration using a neural network (NNGv2) to generate a monthly
climatology. The GLODAPv2 quality-controlled dataset used was modeled by the
NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1.
Validation tests with independent datasets revealed the good generalization
of the network. Data from five ocean time-series stations showed an
acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of
the monthly AT variability in the time series suggests that the NNGv2
is a good candidate to generate a monthly climatology. The climatological
fields of AT were obtained passing through the NNGv2 the World Ocean
Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen
and the computed climatologies of nutrients from the previous ones with a
neural network. The spatiotemporal resolution is set by WOA13:
1∘ × 1∘ in the horizontal, 102 depth levels
(0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m)
temporal resolution. The product is distributed through the data repository
of the Spanish National Research Council (CSIC;
https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/essd-11-1109-2019</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7598-5700</orcidid><orcidid>https://orcid.org/0000-0003-4836-8974</orcidid><orcidid>https://orcid.org/0000-0002-2326-619X</orcidid><orcidid>https://orcid.org/0000-0003-1696-9142</orcidid><orcidid>https://orcid.org/0000-0003-2001-8710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-3516 |
ispartof | Earth system science data, 2019-07, Vol.11 (3), p.1109-1127 |
issn | 1866-3516 1866-3508 1866-3516 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6fd60a40b961494a9baa3b9560fcc616 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Acidification Alkalinity Artificial neural networks Carbon cycle Carbon dioxide Chemical analysis Chemical oceanography Chemical properties Climate Climatology Data analysis Datasets Global climate Information management International aspects Monthly Motor vehicle drivers Neural networks Nutrients Ocean acidification Oceanic analysis Oceanographic atlases Oceans Organic chemistry Oxygen Resolution Root-mean-square errors Salinity Seasonal variability Seasonal variation Seasonal variations Seawater Seawater alkalinity Temporal resolution Time series Water acidification Water analysis |
title | A global monthly climatology of total alkalinity: a neural network approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20monthly%20climatology%20of%20total%20alkalinity:%20a%20neural%20network%20approach&rft.jtitle=Earth%20system%20science%20data&rft.au=Broull%C3%B3n,%20Daniel&rft.date=2019-07-31&rft.volume=11&rft.issue=3&rft.spage=1109&rft.epage=1127&rft.pages=1109-1127&rft.issn=1866-3516&rft.eissn=1866-3516&rft_id=info:doi/10.5194/essd-11-1109-2019&rft_dat=%3Cgale_doaj_%3EA595104334%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2266943525&rft_id=info:pmid/&rft_galeid=A595104334&rfr_iscdi=true |