Loading…

A global monthly climatology of total alkalinity: a neural network approach

Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one...

Full description

Saved in:
Bibliographic Details
Published in:Earth system science data 2019-07, Vol.11 (3), p.1109-1127
Main Authors: Broullón, Daniel, Pérez, Fiz F, Velo, Antón, Hoppema, Mario, Olsen, Are, Takahashi, Taro, Key, Robert M, Tanhua, Toste, González-Dávila, Melchor, Jeansson, Emil, Kozyr, Alex, van Heuven, Steven M. A. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63
cites cdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63
container_end_page 1127
container_issue 3
container_start_page 1109
container_title Earth system science data
container_volume 11
creator Broullón, Daniel
Pérez, Fiz F
Velo, Antón
Hoppema, Mario
Olsen, Are
Takahashi, Taro
Key, Robert M
Tanhua, Toste
González-Dávila, Melchor
Jeansson, Emil
Kozyr, Alex
van Heuven, Steven M. A. C
description Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one variable of the seawater CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of the AT variability and AT concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1. Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean time-series stations showed an acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of the monthly AT variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The climatological fields of AT were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutrients from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1∘ × 1∘ in the horizontal, 102 depth levels (0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m) temporal resolution. The product is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).
doi_str_mv 10.5194/essd-11-1109-2019
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6fd60a40b961494a9baa3b9560fcc616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595104334</galeid><doaj_id>oai_doaj_org_article_6fd60a40b961494a9baa3b9560fcc616</doaj_id><sourcerecordid>A595104334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</originalsourceid><addsrcrecordid>eNptkluLFDEQhRtRcF39Ab41-ORD76Y6l0l8GxYvwy4IXp5DdS69me3pjEkGnX9v2hF1QBJIcfLVoQpO07wEcsVBsWuXs-0A6iWq6wmoR80FSCE6ykE8_qd-2jzLeUuIYLDiF83tuh2nOODU7uJc7qdja6awwxKnOB7b6NsSS_3E6QGnMIdyfNNiO7tDquLsyveYHlrc71NEc_-8eeJxyu7F7_ey-fru7ZebD93dx_ebm_VdZzhTpWNSCboamMQeeqs4YyDBCgDKuR88YZISQqyVVFrVU7KiVgxGoe_lIK0T9LLZnHxtxK3epzpvOuqIQf8SYho1phLM5LTwVhBkZFACmGKoBkQ6KC6IN0bA4vXq5FVX-HZwuehtPKS5jq_7XgjFKO_5X2rEahpmH0tCswvZ6DVXHAijlFXq6j9UPdbtgomz86HqZw2vzxoqU9yPMuIhZ735_OmchRNrUsw5Of9ncSB6iYBeIqAB9BIBvUSA_gT_1qDM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266943525</pqid></control><display><type>article</type><title>A global monthly climatology of total alkalinity: a neural network approach</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Broullón, Daniel ; Pérez, Fiz F ; Velo, Antón ; Hoppema, Mario ; Olsen, Are ; Takahashi, Taro ; Key, Robert M ; Tanhua, Toste ; González-Dávila, Melchor ; Jeansson, Emil ; Kozyr, Alex ; van Heuven, Steven M. A. C</creator><creatorcontrib>Broullón, Daniel ; Pérez, Fiz F ; Velo, Antón ; Hoppema, Mario ; Olsen, Are ; Takahashi, Taro ; Key, Robert M ; Tanhua, Toste ; González-Dávila, Melchor ; Jeansson, Emil ; Kozyr, Alex ; van Heuven, Steven M. A. C</creatorcontrib><description>Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one variable of the seawater CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of the AT variability and AT concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1. Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean time-series stations showed an acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of the monthly AT variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The climatological fields of AT were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutrients from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1∘ × 1∘ in the horizontal, 102 depth levels (0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m) temporal resolution. The product is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).</description><identifier>ISSN: 1866-3516</identifier><identifier>ISSN: 1866-3508</identifier><identifier>EISSN: 1866-3516</identifier><identifier>DOI: 10.5194/essd-11-1109-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Acidification ; Alkalinity ; Artificial neural networks ; Carbon cycle ; Carbon dioxide ; Chemical analysis ; Chemical oceanography ; Chemical properties ; Climate ; Climatology ; Data analysis ; Datasets ; Global climate ; Information management ; International aspects ; Monthly ; Motor vehicle drivers ; Neural networks ; Nutrients ; Ocean acidification ; Oceanic analysis ; Oceanographic atlases ; Oceans ; Organic chemistry ; Oxygen ; Resolution ; Root-mean-square errors ; Salinity ; Seasonal variability ; Seasonal variation ; Seasonal variations ; Seawater ; Seawater alkalinity ; Temporal resolution ; Time series ; Water acidification ; Water analysis</subject><ispartof>Earth system science data, 2019-07, Vol.11 (3), p.1109-1127</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</citedby><cites>FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</cites><orcidid>0000-0002-7598-5700 ; 0000-0003-4836-8974 ; 0000-0002-2326-619X ; 0000-0003-1696-9142 ; 0000-0003-2001-8710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2266943525/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2266943525?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Broullón, Daniel</creatorcontrib><creatorcontrib>Pérez, Fiz F</creatorcontrib><creatorcontrib>Velo, Antón</creatorcontrib><creatorcontrib>Hoppema, Mario</creatorcontrib><creatorcontrib>Olsen, Are</creatorcontrib><creatorcontrib>Takahashi, Taro</creatorcontrib><creatorcontrib>Key, Robert M</creatorcontrib><creatorcontrib>Tanhua, Toste</creatorcontrib><creatorcontrib>González-Dávila, Melchor</creatorcontrib><creatorcontrib>Jeansson, Emil</creatorcontrib><creatorcontrib>Kozyr, Alex</creatorcontrib><creatorcontrib>van Heuven, Steven M. A. C</creatorcontrib><title>A global monthly climatology of total alkalinity: a neural network approach</title><title>Earth system science data</title><description>Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one variable of the seawater CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of the AT variability and AT concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1. Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean time-series stations showed an acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of the monthly AT variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The climatological fields of AT were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutrients from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1∘ × 1∘ in the horizontal, 102 depth levels (0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m) temporal resolution. The product is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).</description><subject>Acidification</subject><subject>Alkalinity</subject><subject>Artificial neural networks</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Chemical analysis</subject><subject>Chemical oceanography</subject><subject>Chemical properties</subject><subject>Climate</subject><subject>Climatology</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Global climate</subject><subject>Information management</subject><subject>International aspects</subject><subject>Monthly</subject><subject>Motor vehicle drivers</subject><subject>Neural networks</subject><subject>Nutrients</subject><subject>Ocean acidification</subject><subject>Oceanic analysis</subject><subject>Oceanographic atlases</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Salinity</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seawater</subject><subject>Seawater alkalinity</subject><subject>Temporal resolution</subject><subject>Time series</subject><subject>Water acidification</subject><subject>Water analysis</subject><issn>1866-3516</issn><issn>1866-3508</issn><issn>1866-3516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkluLFDEQhRtRcF39Ab41-ORD76Y6l0l8GxYvwy4IXp5DdS69me3pjEkGnX9v2hF1QBJIcfLVoQpO07wEcsVBsWuXs-0A6iWq6wmoR80FSCE6ykE8_qd-2jzLeUuIYLDiF83tuh2nOODU7uJc7qdja6awwxKnOB7b6NsSS_3E6QGnMIdyfNNiO7tDquLsyveYHlrc71NEc_-8eeJxyu7F7_ey-fru7ZebD93dx_ebm_VdZzhTpWNSCboamMQeeqs4YyDBCgDKuR88YZISQqyVVFrVU7KiVgxGoe_lIK0T9LLZnHxtxK3epzpvOuqIQf8SYho1phLM5LTwVhBkZFACmGKoBkQ6KC6IN0bA4vXq5FVX-HZwuehtPKS5jq_7XgjFKO_5X2rEahpmH0tCswvZ6DVXHAijlFXq6j9UPdbtgomz86HqZw2vzxoqU9yPMuIhZ735_OmchRNrUsw5Of9ncSB6iYBeIqAB9BIBvUSA_gT_1qDM</recordid><startdate>20190731</startdate><enddate>20190731</enddate><creator>Broullón, Daniel</creator><creator>Pérez, Fiz F</creator><creator>Velo, Antón</creator><creator>Hoppema, Mario</creator><creator>Olsen, Are</creator><creator>Takahashi, Taro</creator><creator>Key, Robert M</creator><creator>Tanhua, Toste</creator><creator>González-Dávila, Melchor</creator><creator>Jeansson, Emil</creator><creator>Kozyr, Alex</creator><creator>van Heuven, Steven M. A. C</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7598-5700</orcidid><orcidid>https://orcid.org/0000-0003-4836-8974</orcidid><orcidid>https://orcid.org/0000-0002-2326-619X</orcidid><orcidid>https://orcid.org/0000-0003-1696-9142</orcidid><orcidid>https://orcid.org/0000-0003-2001-8710</orcidid></search><sort><creationdate>20190731</creationdate><title>A global monthly climatology of total alkalinity: a neural network approach</title><author>Broullón, Daniel ; Pérez, Fiz F ; Velo, Antón ; Hoppema, Mario ; Olsen, Are ; Takahashi, Taro ; Key, Robert M ; Tanhua, Toste ; González-Dávila, Melchor ; Jeansson, Emil ; Kozyr, Alex ; van Heuven, Steven M. A. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidification</topic><topic>Alkalinity</topic><topic>Artificial neural networks</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Chemical analysis</topic><topic>Chemical oceanography</topic><topic>Chemical properties</topic><topic>Climate</topic><topic>Climatology</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Global climate</topic><topic>Information management</topic><topic>International aspects</topic><topic>Monthly</topic><topic>Motor vehicle drivers</topic><topic>Neural networks</topic><topic>Nutrients</topic><topic>Ocean acidification</topic><topic>Oceanic analysis</topic><topic>Oceanographic atlases</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Salinity</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seawater</topic><topic>Seawater alkalinity</topic><topic>Temporal resolution</topic><topic>Time series</topic><topic>Water acidification</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broullón, Daniel</creatorcontrib><creatorcontrib>Pérez, Fiz F</creatorcontrib><creatorcontrib>Velo, Antón</creatorcontrib><creatorcontrib>Hoppema, Mario</creatorcontrib><creatorcontrib>Olsen, Are</creatorcontrib><creatorcontrib>Takahashi, Taro</creatorcontrib><creatorcontrib>Key, Robert M</creatorcontrib><creatorcontrib>Tanhua, Toste</creatorcontrib><creatorcontrib>González-Dávila, Melchor</creatorcontrib><creatorcontrib>Jeansson, Emil</creatorcontrib><creatorcontrib>Kozyr, Alex</creatorcontrib><creatorcontrib>van Heuven, Steven M. A. C</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system science data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broullón, Daniel</au><au>Pérez, Fiz F</au><au>Velo, Antón</au><au>Hoppema, Mario</au><au>Olsen, Are</au><au>Takahashi, Taro</au><au>Key, Robert M</au><au>Tanhua, Toste</au><au>González-Dávila, Melchor</au><au>Jeansson, Emil</au><au>Kozyr, Alex</au><au>van Heuven, Steven M. A. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global monthly climatology of total alkalinity: a neural network approach</atitle><jtitle>Earth system science data</jtitle><date>2019-07-31</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>1109</spage><epage>1127</epage><pages>1109-1127</pages><issn>1866-3516</issn><issn>1866-3508</issn><eissn>1866-3516</eissn><abstract>Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one variable of the seawater CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of the AT variability and AT concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1. Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean time-series stations showed an acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of the monthly AT variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The climatological fields of AT were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutrients from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1∘ × 1∘ in the horizontal, 102 depth levels (0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m) temporal resolution. The product is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/essd-11-1109-2019</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7598-5700</orcidid><orcidid>https://orcid.org/0000-0003-4836-8974</orcidid><orcidid>https://orcid.org/0000-0002-2326-619X</orcidid><orcidid>https://orcid.org/0000-0003-1696-9142</orcidid><orcidid>https://orcid.org/0000-0003-2001-8710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-3516
ispartof Earth system science data, 2019-07, Vol.11 (3), p.1109-1127
issn 1866-3516
1866-3508
1866-3516
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6fd60a40b961494a9baa3b9560fcc616
source Publicly Available Content Database; EZB Electronic Journals Library
subjects Acidification
Alkalinity
Artificial neural networks
Carbon cycle
Carbon dioxide
Chemical analysis
Chemical oceanography
Chemical properties
Climate
Climatology
Data analysis
Datasets
Global climate
Information management
International aspects
Monthly
Motor vehicle drivers
Neural networks
Nutrients
Ocean acidification
Oceanic analysis
Oceanographic atlases
Oceans
Organic chemistry
Oxygen
Resolution
Root-mean-square errors
Salinity
Seasonal variability
Seasonal variation
Seasonal variations
Seawater
Seawater alkalinity
Temporal resolution
Time series
Water acidification
Water analysis
title A global monthly climatology of total alkalinity: a neural network approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20monthly%20climatology%20of%20total%20alkalinity:%20a%20neural%20network%20approach&rft.jtitle=Earth%20system%20science%20data&rft.au=Broull%C3%B3n,%20Daniel&rft.date=2019-07-31&rft.volume=11&rft.issue=3&rft.spage=1109&rft.epage=1127&rft.pages=1109-1127&rft.issn=1866-3516&rft.eissn=1866-3516&rft_id=info:doi/10.5194/essd-11-1109-2019&rft_dat=%3Cgale_doaj_%3EA595104334%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-489637b48a212d9544181d611355fbf0483000dd838d923073d6bc9af28b8de63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2266943525&rft_id=info:pmid/&rft_galeid=A595104334&rfr_iscdi=true