Loading…
Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency
Identifying and reducing the dominant recombination processes in perovskite solar cells is one of the major challenges for further device optimization. Here, we show that introducing a thin interlayer of poly(4-vinylpyridine) (PVP) between the perovskite film and the hole transport layer reduces no...
Saved in:
Published in: | ACS omega 2018-05, Vol.3 (5), p.5038-5043 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Identifying and reducing the dominant recombination processes in perovskite solar cells is one of the major challenges for further device optimization. Here, we show that introducing a thin interlayer of poly(4-vinylpyridine) (PVP) between the perovskite film and the hole transport layer reduces nonradiative recombination. Employing such a PVP interlayer, we reach an open-circuit voltage of 1.20 V for the best devices and a stabilized efficiency of 20.7%. The beneficial effect of the PVP interlayer is proven by statistical analysis of various samples, many of those showing an open-circuit voltage larger than 1.17 V, and a 30 mV increase in average compared to unmodified samples. The reduced nonradiative recombination is proven by enhanced photo- and electroluminescence yields. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.8b00555 |