Loading…

A DECISION LEVEL FUSION METHOD FOR OBJECT RECOGNITION USING MULTI-ANGULAR IMAGERY

Spectral similarity and spatial adjacency between various kinds of objects, shadow and occluded areas behind high rise objects as well as complex relationships lead to object recognition difficulties and ambiguities in complex urban areas. Using new multi-angular satellite imagery, higher levels of...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2013-09, Vol.XL-1/W3, p.409-414
Main Authors: Tabib Mahmoudi, F., Samadzadegan, F., Reinartz, P.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spectral similarity and spatial adjacency between various kinds of objects, shadow and occluded areas behind high rise objects as well as complex relationships lead to object recognition difficulties and ambiguities in complex urban areas. Using new multi-angular satellite imagery, higher levels of analysis and developing a context aware system may improve object recognition results in these situations. In this paper, the capability of multi-angular satellite imagery is used in order to solve object recognition difficulties in complex urban areas based on decision level fusion of Object Based Image Analysis (OBIA). The proposed methodology has two main stages. In the first stage, object based image analysis is performed independently on each of the multi-angular images. Then, in the second stage, the initial classified regions of each individual multi-angular image are fused through a decision level fusion based on the definition of scene context. Evaluation of the capabilities of the proposed methodology is performed on multi-angular WorldView-2 satellite imagery over Rio de Janeiro (Brazil).The obtained results represent several advantages of multi-angular imagery with respect to a single shot dataset. Together with the capabilities of the proposed decision level fusion method, most of the object recognition difficulties and ambiguities are decreased and the overall accuracy and the kappa values are improved.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprsarchives-XL-1-W3-409-2013