Loading…
Research on the Power Output of Different Floating Wind Farms Considering the Wake Effect
For floating wind turbines, one of the most interesting and challenging issues is that the movement of the rotor is strongly related to its floating platform, which results in corresponding variations in the wake characteristics of the turbine. Because the aerodynamic efficiency of the downstream tu...
Saved in:
Published in: | Journal of marine science and engineering 2024-09, Vol.12 (9), p.1475 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-2f1492659f8bfa35bb9424e86ac440544fdd3e58fb6f0f1a77f01e3e477f7f933 |
container_end_page | |
container_issue | 9 |
container_start_page | 1475 |
container_title | Journal of marine science and engineering |
container_volume | 12 |
creator | Cui, Jiaping Wu, Xianyou Lyu, Pin Zhao, Tong Li, Quankun Ma, Ruixian Liu, Yingming |
description | For floating wind turbines, one of the most interesting and challenging issues is that the movement of the rotor is strongly related to its floating platform, which results in corresponding variations in the wake characteristics of the turbine. Because the aerodynamic efficiency of the downstream turbines is affected by the wake characteristics, the power output will consequently vary depending on the different types of floating wind turbines and floating wind farms used. In this study, the rotor movement, wake characteristics, and corresponding wind farm power output are analyzed using a numerical method for three typical floating wind turbines: the semisubmersible type, spar buoy type, and tension leg platform type with a 5 MW configuration. A fixed-bottom monopile wind turbine is adopted as a benchmark. The simulation results show that of the three floating wind turbines, the rotor position and wake center are most dispersed in the case of the spar buoy type, and its wake also has the lowest impact on downstream wind turbines. Additionally, the power output of the corresponding spar buoy type wind farm is also the highest at different wind speeds, followed by the semisubmersible type, tension leg platform type, and then the fixed-bottom type. In particular, at low wind speeds, the wake effects differ significantly among the various types of wind turbines. |
doi_str_mv | 10.3390/jmse12091475 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_702ea644dc4c4623bae1a05a03854dae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811306095</galeid><doaj_id>oai_doaj_org_article_702ea644dc4c4623bae1a05a03854dae</doaj_id><sourcerecordid>A811306095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-2f1492659f8bfa35bb9424e86ac440544fdd3e58fb6f0f1a77f01e3e477f7f933</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRUNSbPyDg1dZ87sdRaquFgiKKeAqz2UlNbTc1SRH_vakV6cxhhpd5XoaZorhgdChEQ68Xq4iM04bJSh0UJ5xW1YAJxg_3-uPiPMYFzVHzktHypHh7wogQzDvxPUnvSB79FwbysEnrTSLekltnLQbsE5ksPSTXz8mr6zsygbCKZOT76DoMW3lLv8IHknEmTDorjiwsI57_1dPiZTJ-Ht0PZg9309HNbGC4UmnALZMNL1Vj69aCUG3bSC6xLsFISZWUtusEqtq2paWWQVVZylCgzE1lGyFOi-nOt_Ow0OvgVhC-tQenfwUf5hpCcmaJuqIcoZSyM9LIkosWkAFVQEWtZAeYvS53XuvgPzcYk174Tejz-lqwfC_KeN3kqeFuag7Z1PXWpwAmZ4crZ3yP1mX9pmZMZKRRGbjaASb4GAPa_zUZ1dvn6f3niR-N74sA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110601289</pqid></control><display><type>article</type><title>Research on the Power Output of Different Floating Wind Farms Considering the Wake Effect</title><source>Publicly Available Content (ProQuest)</source><creator>Cui, Jiaping ; Wu, Xianyou ; Lyu, Pin ; Zhao, Tong ; Li, Quankun ; Ma, Ruixian ; Liu, Yingming</creator><creatorcontrib>Cui, Jiaping ; Wu, Xianyou ; Lyu, Pin ; Zhao, Tong ; Li, Quankun ; Ma, Ruixian ; Liu, Yingming</creatorcontrib><description>For floating wind turbines, one of the most interesting and challenging issues is that the movement of the rotor is strongly related to its floating platform, which results in corresponding variations in the wake characteristics of the turbine. Because the aerodynamic efficiency of the downstream turbines is affected by the wake characteristics, the power output will consequently vary depending on the different types of floating wind turbines and floating wind farms used. In this study, the rotor movement, wake characteristics, and corresponding wind farm power output are analyzed using a numerical method for three typical floating wind turbines: the semisubmersible type, spar buoy type, and tension leg platform type with a 5 MW configuration. A fixed-bottom monopile wind turbine is adopted as a benchmark. The simulation results show that of the three floating wind turbines, the rotor position and wake center are most dispersed in the case of the spar buoy type, and its wake also has the lowest impact on downstream wind turbines. Additionally, the power output of the corresponding spar buoy type wind farm is also the highest at different wind speeds, followed by the semisubmersible type, tension leg platform type, and then the fixed-bottom type. In particular, at low wind speeds, the wake effects differ significantly among the various types of wind turbines.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse12091475</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air-turbines ; Alternative energy sources ; Analysis ; Buildings and facilities ; Buoys ; Floating ; Floating platforms ; floating wind turbine ; Mathematical models ; Numerical methods ; Offshore ; Offshore structures ; power output ; Power plants ; Rotors ; Simulation ; Spar buoys ; Tension ; Tension leg platforms ; Turbine engines ; Turbines ; Velocity ; wake characteristic ; wake effect ; Wind effects ; Wind farms ; Wind power ; Wind speed ; Wind turbines</subject><ispartof>Journal of marine science and engineering, 2024-09, Vol.12 (9), p.1475</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-2f1492659f8bfa35bb9424e86ac440544fdd3e58fb6f0f1a77f01e3e477f7f933</cites><orcidid>0000-0003-0518-450X ; 0009-0008-5310-925X ; 0000-0001-9535-9400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110601289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110601289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Cui, Jiaping</creatorcontrib><creatorcontrib>Wu, Xianyou</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Zhao, Tong</creatorcontrib><creatorcontrib>Li, Quankun</creatorcontrib><creatorcontrib>Ma, Ruixian</creatorcontrib><creatorcontrib>Liu, Yingming</creatorcontrib><title>Research on the Power Output of Different Floating Wind Farms Considering the Wake Effect</title><title>Journal of marine science and engineering</title><description>For floating wind turbines, one of the most interesting and challenging issues is that the movement of the rotor is strongly related to its floating platform, which results in corresponding variations in the wake characteristics of the turbine. Because the aerodynamic efficiency of the downstream turbines is affected by the wake characteristics, the power output will consequently vary depending on the different types of floating wind turbines and floating wind farms used. In this study, the rotor movement, wake characteristics, and corresponding wind farm power output are analyzed using a numerical method for three typical floating wind turbines: the semisubmersible type, spar buoy type, and tension leg platform type with a 5 MW configuration. A fixed-bottom monopile wind turbine is adopted as a benchmark. The simulation results show that of the three floating wind turbines, the rotor position and wake center are most dispersed in the case of the spar buoy type, and its wake also has the lowest impact on downstream wind turbines. Additionally, the power output of the corresponding spar buoy type wind farm is also the highest at different wind speeds, followed by the semisubmersible type, tension leg platform type, and then the fixed-bottom type. In particular, at low wind speeds, the wake effects differ significantly among the various types of wind turbines.</description><subject>Air-turbines</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Buildings and facilities</subject><subject>Buoys</subject><subject>Floating</subject><subject>Floating platforms</subject><subject>floating wind turbine</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Offshore</subject><subject>Offshore structures</subject><subject>power output</subject><subject>Power plants</subject><subject>Rotors</subject><subject>Simulation</subject><subject>Spar buoys</subject><subject>Tension</subject><subject>Tension leg platforms</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Velocity</subject><subject>wake characteristic</subject><subject>wake effect</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRUNSbPyDg1dZ87sdRaquFgiKKeAqz2UlNbTc1SRH_vakV6cxhhpd5XoaZorhgdChEQ68Xq4iM04bJSh0UJ5xW1YAJxg_3-uPiPMYFzVHzktHypHh7wogQzDvxPUnvSB79FwbysEnrTSLekltnLQbsE5ksPSTXz8mr6zsygbCKZOT76DoMW3lLv8IHknEmTDorjiwsI57_1dPiZTJ-Ht0PZg9309HNbGC4UmnALZMNL1Vj69aCUG3bSC6xLsFISZWUtusEqtq2paWWQVVZylCgzE1lGyFOi-nOt_Ow0OvgVhC-tQenfwUf5hpCcmaJuqIcoZSyM9LIkosWkAFVQEWtZAeYvS53XuvgPzcYk174Tejz-lqwfC_KeN3kqeFuag7Z1PXWpwAmZ4crZ3yP1mX9pmZMZKRRGbjaASb4GAPa_zUZ1dvn6f3niR-N74sA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cui, Jiaping</creator><creator>Wu, Xianyou</creator><creator>Lyu, Pin</creator><creator>Zhao, Tong</creator><creator>Li, Quankun</creator><creator>Ma, Ruixian</creator><creator>Liu, Yingming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0518-450X</orcidid><orcidid>https://orcid.org/0009-0008-5310-925X</orcidid><orcidid>https://orcid.org/0000-0001-9535-9400</orcidid></search><sort><creationdate>20240901</creationdate><title>Research on the Power Output of Different Floating Wind Farms Considering the Wake Effect</title><author>Cui, Jiaping ; Wu, Xianyou ; Lyu, Pin ; Zhao, Tong ; Li, Quankun ; Ma, Ruixian ; Liu, Yingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-2f1492659f8bfa35bb9424e86ac440544fdd3e58fb6f0f1a77f01e3e477f7f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air-turbines</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Buildings and facilities</topic><topic>Buoys</topic><topic>Floating</topic><topic>Floating platforms</topic><topic>floating wind turbine</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Offshore</topic><topic>Offshore structures</topic><topic>power output</topic><topic>Power plants</topic><topic>Rotors</topic><topic>Simulation</topic><topic>Spar buoys</topic><topic>Tension</topic><topic>Tension leg platforms</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Velocity</topic><topic>wake characteristic</topic><topic>wake effect</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jiaping</creatorcontrib><creatorcontrib>Wu, Xianyou</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Zhao, Tong</creatorcontrib><creatorcontrib>Li, Quankun</creatorcontrib><creatorcontrib>Ma, Ruixian</creatorcontrib><creatorcontrib>Liu, Yingming</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jiaping</au><au>Wu, Xianyou</au><au>Lyu, Pin</au><au>Zhao, Tong</au><au>Li, Quankun</au><au>Ma, Ruixian</au><au>Liu, Yingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Power Output of Different Floating Wind Farms Considering the Wake Effect</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>1475</spage><pages>1475-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>For floating wind turbines, one of the most interesting and challenging issues is that the movement of the rotor is strongly related to its floating platform, which results in corresponding variations in the wake characteristics of the turbine. Because the aerodynamic efficiency of the downstream turbines is affected by the wake characteristics, the power output will consequently vary depending on the different types of floating wind turbines and floating wind farms used. In this study, the rotor movement, wake characteristics, and corresponding wind farm power output are analyzed using a numerical method for three typical floating wind turbines: the semisubmersible type, spar buoy type, and tension leg platform type with a 5 MW configuration. A fixed-bottom monopile wind turbine is adopted as a benchmark. The simulation results show that of the three floating wind turbines, the rotor position and wake center are most dispersed in the case of the spar buoy type, and its wake also has the lowest impact on downstream wind turbines. Additionally, the power output of the corresponding spar buoy type wind farm is also the highest at different wind speeds, followed by the semisubmersible type, tension leg platform type, and then the fixed-bottom type. In particular, at low wind speeds, the wake effects differ significantly among the various types of wind turbines.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse12091475</doi><orcidid>https://orcid.org/0000-0003-0518-450X</orcidid><orcidid>https://orcid.org/0009-0008-5310-925X</orcidid><orcidid>https://orcid.org/0000-0001-9535-9400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-1312 |
ispartof | Journal of marine science and engineering, 2024-09, Vol.12 (9), p.1475 |
issn | 2077-1312 2077-1312 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_702ea644dc4c4623bae1a05a03854dae |
source | Publicly Available Content (ProQuest) |
subjects | Air-turbines Alternative energy sources Analysis Buildings and facilities Buoys Floating Floating platforms floating wind turbine Mathematical models Numerical methods Offshore Offshore structures power output Power plants Rotors Simulation Spar buoys Tension Tension leg platforms Turbine engines Turbines Velocity wake characteristic wake effect Wind effects Wind farms Wind power Wind speed Wind turbines |
title | Research on the Power Output of Different Floating Wind Farms Considering the Wake Effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Power%20Output%20of%20Different%20Floating%20Wind%20Farms%20Considering%20the%20Wake%20Effect&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Cui,%20Jiaping&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=1475&rft.pages=1475-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse12091475&rft_dat=%3Cgale_doaj_%3EA811306095%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-2f1492659f8bfa35bb9424e86ac440544fdd3e58fb6f0f1a77f01e3e477f7f933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110601289&rft_id=info:pmid/&rft_galeid=A811306095&rfr_iscdi=true |