Loading…

Quantification of Energy-Related Parameters for Near-Fault Pulse-Like Seismic Ground Motions

An energy-based approach facilitates the explicit consideration of the damage associated with both maximum displacements and cumulative plastic deformations under earthquakes. For structural systems that can undergo pulse-like seismic ground motions close to causative faults, an energy-based approac...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-11, Vol.10 (21), p.7578
Main Authors: AlShawa, Omar, Angelucci, Giulia, Mollaioli, Fabrizio, Quaranta, Giuseppe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An energy-based approach facilitates the explicit consideration of the damage associated with both maximum displacements and cumulative plastic deformations under earthquakes. For structural systems that can undergo pulse-like seismic ground motions close to causative faults, an energy-based approach is deemed especially appropriate with respect to well-established force- or displacement-based strategies. In such a case, in fact, most of the damage is attributable to the dominant pulse-like component, which usually occurs into the velocity time history of the seismic ground motion, thus implying high energy levels imparted to a structural system. In order to enable the implementation of an energy-based approach in the analysis and design of structures under near-fault pulse-like seismic ground motions, this study presents a comprehensive numerical investigation about the influence of seismological parameters and hysteretic behavior on the spectra of the following energy-related parameters: inelastic absolute and relative input energy; input energy reduction factor; hysteretic energy dissipation demand; hysteretic energy reduction factor; dimensionless cumulative plastic deformation ratio. Closed-form approximations are proposed for these spectra, and the numerical values of the corresponding parameters have been also calibrated (with reference to both mean and standard deviation values) as functions of earthquake magnitude, type of hysteretic behavior (i.e., non-degrading or degrading) and ductility level. The outcomes of this study are meant to support the derivation of design spectra for the energy-based seismic design of structures under near-fault pulse-like seismic ground motions.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10217578