Loading…
Analyzing the Effect of Tethered Cable on the Stability of Tethered UAVs Based on Lyapunov Exponents
In the working process of the tethered unmanned aerial vehicle (UAV), there is interference from the tethered cable, which can easily lead to the instability of the UAV. To solve the above problems, a method based on the Lyapunov exponent is proposed to analyze the stability of tethered cables for t...
Saved in:
Published in: | Applied sciences 2024-05, Vol.14 (10), p.4253 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the working process of the tethered unmanned aerial vehicle (UAV), there is interference from the tethered cable, which can easily lead to the instability of the UAV. To solve the above problems, a method based on the Lyapunov exponent is proposed to analyze the stability of tethered cables for tethered UAVs. The dynamics equation of the UAV platform is established using the Euler–Poincare equation. The tension formula of the tethered cable is derived from the catenary theory and the principle of micro-segment equilibrium. Based on the Lyapunov exponential method, the stability changes of the tethered UAV in the takeoff, hovering, and landing stages are simulated and analyzed in a MATLAB environment. Prototype tests are carried out to prove the correctness of the simulation model and calculation conclusions. The results show that with an increase in the density of the tethered cable, the stability of the tethered UAV tends to decrease. At the same time, stability is affected by the density of the tethered cable more often during takeoff than during landing. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14104253 |