Loading…

Fuzzy Quality Certification of Wheat

This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a qual...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2022-10, Vol.12 (10), p.1640
Main Authors: Simionescu, Cristian Silviu, Plenovici, Ciprian Petrisor, Augustin, Constanta Laura, Rahoveanu, Maria Magdalena Turek, Rahoveanu, Adrian Turek, Zugravu, Gheorghe Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423
cites cdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423
container_end_page
container_issue 10
container_start_page 1640
container_title Agriculture (Basel)
container_volume 12
creator Simionescu, Cristian Silviu
Plenovici, Ciprian Petrisor
Augustin, Constanta Laura
Rahoveanu, Maria Magdalena Turek
Rahoveanu, Adrian Turek
Zugravu, Gheorghe Adrian
description This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.
doi_str_mv 10.3390/agriculture12101640
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_706764a1e2b64861a56e739b8c89d1b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745093220</galeid><doaj_id>oai_doaj_org_article_706764a1e2b64861a56e739b8c89d1b1</doaj_id><sourcerecordid>A745093220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</originalsourceid><addsrcrecordid>eNptkU1Lw0AQhoMoWGp_gZeAXlNnP7Ifx1KsFgoiKB6XzWa3bkmzdZMc2l_vakQ8OMMwwzDzzAuTZdcI5oRIuNPb6M3Q9EO0CCNAjMJZNsHAeQGU4_M_9WU267odJJOICGCT7HY1nE7H_HnQje-P-dLG3jtvdO9DmweXv71b3V9lF043nZ395Gn2urp_WT4Wm6eH9XKxKQwpeV8gYNghhjSXFJuaOOfAiZIbCkILRDVyiDtbCWqgLDEAhhKcMbJOwSgm02w9cuugd-oQ_V7Howraq-9GiFulkz7TWMWBcZaIFleMinSzZJYTWQkjZI0qlFg3I-sQw8dgu17twhDbJF9hjkWSRKRMU_NxaqsT1Lcu9FGb5LXdexNa63zqLzgtQRKMIS2QccHE0HXRul-ZCNTXO9Q_7yCfpv59EA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728408399</pqid></control><display><type>article</type><title>Fuzzy Quality Certification of Wheat</title><source>Publicly Available Content Database</source><creator>Simionescu, Cristian Silviu ; Plenovici, Ciprian Petrisor ; Augustin, Constanta Laura ; Rahoveanu, Maria Magdalena Turek ; Rahoveanu, Adrian Turek ; Zugravu, Gheorghe Adrian</creator><creatorcontrib>Simionescu, Cristian Silviu ; Plenovici, Ciprian Petrisor ; Augustin, Constanta Laura ; Rahoveanu, Maria Magdalena Turek ; Rahoveanu, Adrian Turek ; Zugravu, Gheorghe Adrian</creatorcontrib><description>This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture12101640</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Certification ; Food quality ; Food safety ; Fuzzy logic ; fuzzy quality certification model ; Fuzzy sets ; Grain ; Laboratories ; Quality control ; Quality standards ; Wheat ; wheat quality</subject><ispartof>Agriculture (Basel), 2022-10, Vol.12 (10), p.1640</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</citedby><cites>FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</cites><orcidid>0000-0002-8787-3685 ; 0000-0002-9106-3781 ; 0000-0001-5238-5641 ; 0000-0003-2336-5507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728408399/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728408399?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Simionescu, Cristian Silviu</creatorcontrib><creatorcontrib>Plenovici, Ciprian Petrisor</creatorcontrib><creatorcontrib>Augustin, Constanta Laura</creatorcontrib><creatorcontrib>Rahoveanu, Maria Magdalena Turek</creatorcontrib><creatorcontrib>Rahoveanu, Adrian Turek</creatorcontrib><creatorcontrib>Zugravu, Gheorghe Adrian</creatorcontrib><title>Fuzzy Quality Certification of Wheat</title><title>Agriculture (Basel)</title><description>This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.</description><subject>Algorithms</subject><subject>Certification</subject><subject>Food quality</subject><subject>Food safety</subject><subject>Fuzzy logic</subject><subject>fuzzy quality certification model</subject><subject>Fuzzy sets</subject><subject>Grain</subject><subject>Laboratories</subject><subject>Quality control</subject><subject>Quality standards</subject><subject>Wheat</subject><subject>wheat quality</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1Lw0AQhoMoWGp_gZeAXlNnP7Ifx1KsFgoiKB6XzWa3bkmzdZMc2l_vakQ8OMMwwzDzzAuTZdcI5oRIuNPb6M3Q9EO0CCNAjMJZNsHAeQGU4_M_9WU267odJJOICGCT7HY1nE7H_HnQje-P-dLG3jtvdO9DmweXv71b3V9lF043nZ395Gn2urp_WT4Wm6eH9XKxKQwpeV8gYNghhjSXFJuaOOfAiZIbCkILRDVyiDtbCWqgLDEAhhKcMbJOwSgm02w9cuugd-oQ_V7Howraq-9GiFulkz7TWMWBcZaIFleMinSzZJYTWQkjZI0qlFg3I-sQw8dgu17twhDbJF9hjkWSRKRMU_NxaqsT1Lcu9FGb5LXdexNa63zqLzgtQRKMIS2QccHE0HXRul-ZCNTXO9Q_7yCfpv59EA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Simionescu, Cristian Silviu</creator><creator>Plenovici, Ciprian Petrisor</creator><creator>Augustin, Constanta Laura</creator><creator>Rahoveanu, Maria Magdalena Turek</creator><creator>Rahoveanu, Adrian Turek</creator><creator>Zugravu, Gheorghe Adrian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8787-3685</orcidid><orcidid>https://orcid.org/0000-0002-9106-3781</orcidid><orcidid>https://orcid.org/0000-0001-5238-5641</orcidid><orcidid>https://orcid.org/0000-0003-2336-5507</orcidid></search><sort><creationdate>20221001</creationdate><title>Fuzzy Quality Certification of Wheat</title><author>Simionescu, Cristian Silviu ; Plenovici, Ciprian Petrisor ; Augustin, Constanta Laura ; Rahoveanu, Maria Magdalena Turek ; Rahoveanu, Adrian Turek ; Zugravu, Gheorghe Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Certification</topic><topic>Food quality</topic><topic>Food safety</topic><topic>Fuzzy logic</topic><topic>fuzzy quality certification model</topic><topic>Fuzzy sets</topic><topic>Grain</topic><topic>Laboratories</topic><topic>Quality control</topic><topic>Quality standards</topic><topic>Wheat</topic><topic>wheat quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simionescu, Cristian Silviu</creatorcontrib><creatorcontrib>Plenovici, Ciprian Petrisor</creatorcontrib><creatorcontrib>Augustin, Constanta Laura</creatorcontrib><creatorcontrib>Rahoveanu, Maria Magdalena Turek</creatorcontrib><creatorcontrib>Rahoveanu, Adrian Turek</creatorcontrib><creatorcontrib>Zugravu, Gheorghe Adrian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simionescu, Cristian Silviu</au><au>Plenovici, Ciprian Petrisor</au><au>Augustin, Constanta Laura</au><au>Rahoveanu, Maria Magdalena Turek</au><au>Rahoveanu, Adrian Turek</au><au>Zugravu, Gheorghe Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Quality Certification of Wheat</atitle><jtitle>Agriculture (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>1640</spage><pages>1640-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture12101640</doi><orcidid>https://orcid.org/0000-0002-8787-3685</orcidid><orcidid>https://orcid.org/0000-0002-9106-3781</orcidid><orcidid>https://orcid.org/0000-0001-5238-5641</orcidid><orcidid>https://orcid.org/0000-0003-2336-5507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2022-10, Vol.12 (10), p.1640
issn 2077-0472
2077-0472
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_706764a1e2b64861a56e739b8c89d1b1
source Publicly Available Content Database
subjects Algorithms
Certification
Food quality
Food safety
Fuzzy logic
fuzzy quality certification model
Fuzzy sets
Grain
Laboratories
Quality control
Quality standards
Wheat
wheat quality
title Fuzzy Quality Certification of Wheat
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Quality%20Certification%20of%20Wheat&rft.jtitle=Agriculture%20(Basel)&rft.au=Simionescu,%20Cristian%20Silviu&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=1640&rft.pages=1640-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture12101640&rft_dat=%3Cgale_doaj_%3EA745093220%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728408399&rft_id=info:pmid/&rft_galeid=A745093220&rfr_iscdi=true