Loading…
Fuzzy Quality Certification of Wheat
This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a qual...
Saved in:
Published in: | Agriculture (Basel) 2022-10, Vol.12 (10), p.1640 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423 |
container_end_page | |
container_issue | 10 |
container_start_page | 1640 |
container_title | Agriculture (Basel) |
container_volume | 12 |
creator | Simionescu, Cristian Silviu Plenovici, Ciprian Petrisor Augustin, Constanta Laura Rahoveanu, Maria Magdalena Turek Rahoveanu, Adrian Turek Zugravu, Gheorghe Adrian |
description | This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification. |
doi_str_mv | 10.3390/agriculture12101640 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_706764a1e2b64861a56e739b8c89d1b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745093220</galeid><doaj_id>oai_doaj_org_article_706764a1e2b64861a56e739b8c89d1b1</doaj_id><sourcerecordid>A745093220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</originalsourceid><addsrcrecordid>eNptkU1Lw0AQhoMoWGp_gZeAXlNnP7Ifx1KsFgoiKB6XzWa3bkmzdZMc2l_vakQ8OMMwwzDzzAuTZdcI5oRIuNPb6M3Q9EO0CCNAjMJZNsHAeQGU4_M_9WU267odJJOICGCT7HY1nE7H_HnQje-P-dLG3jtvdO9DmweXv71b3V9lF043nZ395Gn2urp_WT4Wm6eH9XKxKQwpeV8gYNghhjSXFJuaOOfAiZIbCkILRDVyiDtbCWqgLDEAhhKcMbJOwSgm02w9cuugd-oQ_V7Howraq-9GiFulkz7TWMWBcZaIFleMinSzZJYTWQkjZI0qlFg3I-sQw8dgu17twhDbJF9hjkWSRKRMU_NxaqsT1Lcu9FGb5LXdexNa63zqLzgtQRKMIS2QccHE0HXRul-ZCNTXO9Q_7yCfpv59EA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728408399</pqid></control><display><type>article</type><title>Fuzzy Quality Certification of Wheat</title><source>Publicly Available Content Database</source><creator>Simionescu, Cristian Silviu ; Plenovici, Ciprian Petrisor ; Augustin, Constanta Laura ; Rahoveanu, Maria Magdalena Turek ; Rahoveanu, Adrian Turek ; Zugravu, Gheorghe Adrian</creator><creatorcontrib>Simionescu, Cristian Silviu ; Plenovici, Ciprian Petrisor ; Augustin, Constanta Laura ; Rahoveanu, Maria Magdalena Turek ; Rahoveanu, Adrian Turek ; Zugravu, Gheorghe Adrian</creatorcontrib><description>This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture12101640</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Certification ; Food quality ; Food safety ; Fuzzy logic ; fuzzy quality certification model ; Fuzzy sets ; Grain ; Laboratories ; Quality control ; Quality standards ; Wheat ; wheat quality</subject><ispartof>Agriculture (Basel), 2022-10, Vol.12 (10), p.1640</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</citedby><cites>FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</cites><orcidid>0000-0002-8787-3685 ; 0000-0002-9106-3781 ; 0000-0001-5238-5641 ; 0000-0003-2336-5507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728408399/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728408399?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Simionescu, Cristian Silviu</creatorcontrib><creatorcontrib>Plenovici, Ciprian Petrisor</creatorcontrib><creatorcontrib>Augustin, Constanta Laura</creatorcontrib><creatorcontrib>Rahoveanu, Maria Magdalena Turek</creatorcontrib><creatorcontrib>Rahoveanu, Adrian Turek</creatorcontrib><creatorcontrib>Zugravu, Gheorghe Adrian</creatorcontrib><title>Fuzzy Quality Certification of Wheat</title><title>Agriculture (Basel)</title><description>This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.</description><subject>Algorithms</subject><subject>Certification</subject><subject>Food quality</subject><subject>Food safety</subject><subject>Fuzzy logic</subject><subject>fuzzy quality certification model</subject><subject>Fuzzy sets</subject><subject>Grain</subject><subject>Laboratories</subject><subject>Quality control</subject><subject>Quality standards</subject><subject>Wheat</subject><subject>wheat quality</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1Lw0AQhoMoWGp_gZeAXlNnP7Ifx1KsFgoiKB6XzWa3bkmzdZMc2l_vakQ8OMMwwzDzzAuTZdcI5oRIuNPb6M3Q9EO0CCNAjMJZNsHAeQGU4_M_9WU267odJJOICGCT7HY1nE7H_HnQje-P-dLG3jtvdO9DmweXv71b3V9lF043nZ395Gn2urp_WT4Wm6eH9XKxKQwpeV8gYNghhjSXFJuaOOfAiZIbCkILRDVyiDtbCWqgLDEAhhKcMbJOwSgm02w9cuugd-oQ_V7Howraq-9GiFulkz7TWMWBcZaIFleMinSzZJYTWQkjZI0qlFg3I-sQw8dgu17twhDbJF9hjkWSRKRMU_NxaqsT1Lcu9FGb5LXdexNa63zqLzgtQRKMIS2QccHE0HXRul-ZCNTXO9Q_7yCfpv59EA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Simionescu, Cristian Silviu</creator><creator>Plenovici, Ciprian Petrisor</creator><creator>Augustin, Constanta Laura</creator><creator>Rahoveanu, Maria Magdalena Turek</creator><creator>Rahoveanu, Adrian Turek</creator><creator>Zugravu, Gheorghe Adrian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8787-3685</orcidid><orcidid>https://orcid.org/0000-0002-9106-3781</orcidid><orcidid>https://orcid.org/0000-0001-5238-5641</orcidid><orcidid>https://orcid.org/0000-0003-2336-5507</orcidid></search><sort><creationdate>20221001</creationdate><title>Fuzzy Quality Certification of Wheat</title><author>Simionescu, Cristian Silviu ; Plenovici, Ciprian Petrisor ; Augustin, Constanta Laura ; Rahoveanu, Maria Magdalena Turek ; Rahoveanu, Adrian Turek ; Zugravu, Gheorghe Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Certification</topic><topic>Food quality</topic><topic>Food safety</topic><topic>Fuzzy logic</topic><topic>fuzzy quality certification model</topic><topic>Fuzzy sets</topic><topic>Grain</topic><topic>Laboratories</topic><topic>Quality control</topic><topic>Quality standards</topic><topic>Wheat</topic><topic>wheat quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simionescu, Cristian Silviu</creatorcontrib><creatorcontrib>Plenovici, Ciprian Petrisor</creatorcontrib><creatorcontrib>Augustin, Constanta Laura</creatorcontrib><creatorcontrib>Rahoveanu, Maria Magdalena Turek</creatorcontrib><creatorcontrib>Rahoveanu, Adrian Turek</creatorcontrib><creatorcontrib>Zugravu, Gheorghe Adrian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simionescu, Cristian Silviu</au><au>Plenovici, Ciprian Petrisor</au><au>Augustin, Constanta Laura</au><au>Rahoveanu, Maria Magdalena Turek</au><au>Rahoveanu, Adrian Turek</au><au>Zugravu, Gheorghe Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Quality Certification of Wheat</atitle><jtitle>Agriculture (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>1640</spage><pages>1640-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>This paper presents a fuzzy quality certification of wheat. This analysis is based on the fuzzy analysis model of wheat. We developed a Matlab application with the help of which we modeled the perceptions in relation to the main quality physical and chemical characteristics of wheat obtaining a quality index of wheat lots. The algorithm presented in this article allows for obtaining and using the global quality index, generating applicability not only to the commercial sphere as a quality reference and price setting, but also a measure of appreciation of processing opportunities. Indices of fuzzy quality associated with wheat lots using a fuzzy model offer the opportunity to develop local markets through quality certification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture12101640</doi><orcidid>https://orcid.org/0000-0002-8787-3685</orcidid><orcidid>https://orcid.org/0000-0002-9106-3781</orcidid><orcidid>https://orcid.org/0000-0001-5238-5641</orcidid><orcidid>https://orcid.org/0000-0003-2336-5507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0472 |
ispartof | Agriculture (Basel), 2022-10, Vol.12 (10), p.1640 |
issn | 2077-0472 2077-0472 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_706764a1e2b64861a56e739b8c89d1b1 |
source | Publicly Available Content Database |
subjects | Algorithms Certification Food quality Food safety Fuzzy logic fuzzy quality certification model Fuzzy sets Grain Laboratories Quality control Quality standards Wheat wheat quality |
title | Fuzzy Quality Certification of Wheat |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Quality%20Certification%20of%20Wheat&rft.jtitle=Agriculture%20(Basel)&rft.au=Simionescu,%20Cristian%20Silviu&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=1640&rft.pages=1640-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture12101640&rft_dat=%3Cgale_doaj_%3EA745093220%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-1062f161a7942cd3fff0f857c408a814a1f17feb84c0552002050fcc9dcc96423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728408399&rft_id=info:pmid/&rft_galeid=A745093220&rfr_iscdi=true |