Loading…
Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exi...
Saved in:
Published in: | International journal of molecular sciences 2020-11, Vol.21 (22), p.8478 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03 |
container_end_page | |
container_issue | 22 |
container_start_page | 8478 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Rodríguez-Caparrós, Alonso Álvarez-Santiago, Jesús Del Valle-Pastor, María Jesús Suñé, Carlos López-Ros, Jennifer Hernández-Munain, Cristina |
description | The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation. |
doi_str_mv | 10.3390/ijms21228478 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7067953241134edfb7e67cb01ae252f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7067953241134edfb7e67cb01ae252f1</doaj_id><sourcerecordid>2460760746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</originalsourceid><addsrcrecordid>eNpdkl2L1DAUhoMo7ofeeS0Bb7zYar7apDeCjLPrwoCwjNchTU9mOrbJmLTi_ntTuy6zQiDhzcPDOYeD0BtKPnBek4_dYUiMMqaEVM_QORWMFYRU8vnJ-wxdpHQghHFW1i_RGedUSVrLc_TjDnZTb8YueBwc3hYW-h7fgYXjGCK-AQ94_fsYIaUZae7xdh8Bii_dAH6OTI83wU4Jr4J3IQ6LyvgWr_3eeAsRX0_ezukr9MKZPsHrh_sSfb9eb1dfi823m9vV501hcwtj4YRxLW_AGUZN3VS1c1Qq3lTQCKOEzTGAZYKaRrSulNZIKVorSlWDII7wS3S7eNtgDvoYu8HEex1Mp_8GIe60iWNne9AyD6cueZZRLqB1jYRK2oZQA6xkjmbXp8V1nJoBWgt-jKZ_In3647u93oVfWlZ1VldZ8P5BEMPPCdKohy7NQzYewpQ0ExWR-YgZffcfeghTzBNeKKWoKlWmrhbKxpBSBPdYDCV63gh9uhEZf3vawCP8bwX4HyKPs4Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460881858</pqid></control><display><type>article</type><title>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Rodríguez-Caparrós, Alonso ; Álvarez-Santiago, Jesús ; Del Valle-Pastor, María Jesús ; Suñé, Carlos ; López-Ros, Jennifer ; Hernández-Munain, Cristina</creator><creatorcontrib>Rodríguez-Caparrós, Alonso ; Álvarez-Santiago, Jesús ; Del Valle-Pastor, María Jesús ; Suñé, Carlos ; López-Ros, Jennifer ; Hernández-Munain, Cristina</creatorcontrib><description>The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21228478</identifier><identifier>PMID: 33187197</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive immunity ; Animals ; Antigens ; Chromatin ; Chromatin - genetics ; Chromatin - immunology ; Configurations ; Conformation ; enhancer ; Enhancer Elements, Genetic - genetics ; Enhancer Elements, Genetic - immunology ; Enhancers ; Gene expression ; Gene Expression Regulation - genetics ; Gene Expression Regulation - immunology ; Genes, T-Cell Receptor - genetics ; Genes, T-Cell Receptor - immunology ; Humans ; Immune response ; Lymphocytes ; Lymphocytes T ; Maturation ; Pathogens ; Peptides ; Regulatory sequences ; Review ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - immunology ; T cell receptors ; T-cell development ; T-cell receptor ; T-Lymphocytes - immunology ; Thymocytes ; Thymus gland ; Transcription ; Transcription, Genetic - genetics ; Transcription, Genetic - immunology ; V(D)J recombination ; V(D)J Recombination - genetics ; V(D)J Recombination - immunology ; Vertebrates</subject><ispartof>International journal of molecular sciences, 2020-11, Vol.21 (22), p.8478</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</citedby><cites>FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</cites><orcidid>0000-0002-7991-0458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2460881858/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2460881858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33187197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Caparrós, Alonso</creatorcontrib><creatorcontrib>Álvarez-Santiago, Jesús</creatorcontrib><creatorcontrib>Del Valle-Pastor, María Jesús</creatorcontrib><creatorcontrib>Suñé, Carlos</creatorcontrib><creatorcontrib>López-Ros, Jennifer</creatorcontrib><creatorcontrib>Hernández-Munain, Cristina</creatorcontrib><title>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.</description><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Antigens</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - immunology</subject><subject>Configurations</subject><subject>Conformation</subject><subject>enhancer</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancer Elements, Genetic - immunology</subject><subject>Enhancers</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - immunology</subject><subject>Genes, T-Cell Receptor - genetics</subject><subject>Genes, T-Cell Receptor - immunology</subject><subject>Humans</subject><subject>Immune response</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Maturation</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Regulatory sequences</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>T cell receptors</subject><subject>T-cell development</subject><subject>T-cell receptor</subject><subject>T-Lymphocytes - immunology</subject><subject>Thymocytes</subject><subject>Thymus gland</subject><subject>Transcription</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcription, Genetic - immunology</subject><subject>V(D)J recombination</subject><subject>V(D)J Recombination - genetics</subject><subject>V(D)J Recombination - immunology</subject><subject>Vertebrates</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl2L1DAUhoMo7ofeeS0Bb7zYar7apDeCjLPrwoCwjNchTU9mOrbJmLTi_ntTuy6zQiDhzcPDOYeD0BtKPnBek4_dYUiMMqaEVM_QORWMFYRU8vnJ-wxdpHQghHFW1i_RGedUSVrLc_TjDnZTb8YueBwc3hYW-h7fgYXjGCK-AQ94_fsYIaUZae7xdh8Bii_dAH6OTI83wU4Jr4J3IQ6LyvgWr_3eeAsRX0_ezukr9MKZPsHrh_sSfb9eb1dfi823m9vV501hcwtj4YRxLW_AGUZN3VS1c1Qq3lTQCKOEzTGAZYKaRrSulNZIKVorSlWDII7wS3S7eNtgDvoYu8HEex1Mp_8GIe60iWNne9AyD6cueZZRLqB1jYRK2oZQA6xkjmbXp8V1nJoBWgt-jKZ_In3647u93oVfWlZ1VldZ8P5BEMPPCdKohy7NQzYewpQ0ExWR-YgZffcfeghTzBNeKKWoKlWmrhbKxpBSBPdYDCV63gh9uhEZf3vawCP8bwX4HyKPs4Y</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Rodríguez-Caparrós, Alonso</creator><creator>Álvarez-Santiago, Jesús</creator><creator>Del Valle-Pastor, María Jesús</creator><creator>Suñé, Carlos</creator><creator>López-Ros, Jennifer</creator><creator>Hernández-Munain, Cristina</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7991-0458</orcidid></search><sort><creationdate>20201111</creationdate><title>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</title><author>Rodríguez-Caparrós, Alonso ; Álvarez-Santiago, Jesús ; Del Valle-Pastor, María Jesús ; Suñé, Carlos ; López-Ros, Jennifer ; Hernández-Munain, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Antigens</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - immunology</topic><topic>Configurations</topic><topic>Conformation</topic><topic>enhancer</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancer Elements, Genetic - immunology</topic><topic>Enhancers</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - immunology</topic><topic>Genes, T-Cell Receptor - genetics</topic><topic>Genes, T-Cell Receptor - immunology</topic><topic>Humans</topic><topic>Immune response</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Maturation</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Regulatory sequences</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>T cell receptors</topic><topic>T-cell development</topic><topic>T-cell receptor</topic><topic>T-Lymphocytes - immunology</topic><topic>Thymocytes</topic><topic>Thymus gland</topic><topic>Transcription</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcription, Genetic - immunology</topic><topic>V(D)J recombination</topic><topic>V(D)J Recombination - genetics</topic><topic>V(D)J Recombination - immunology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Caparrós, Alonso</creatorcontrib><creatorcontrib>Álvarez-Santiago, Jesús</creatorcontrib><creatorcontrib>Del Valle-Pastor, María Jesús</creatorcontrib><creatorcontrib>Suñé, Carlos</creatorcontrib><creatorcontrib>López-Ros, Jennifer</creatorcontrib><creatorcontrib>Hernández-Munain, Cristina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Caparrós, Alonso</au><au>Álvarez-Santiago, Jesús</au><au>Del Valle-Pastor, María Jesús</au><au>Suñé, Carlos</au><au>López-Ros, Jennifer</au><au>Hernández-Munain, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>21</volume><issue>22</issue><spage>8478</spage><pages>8478-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33187197</pmid><doi>10.3390/ijms21228478</doi><orcidid>https://orcid.org/0000-0002-7991-0458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-11, Vol.21 (22), p.8478 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7067953241134edfb7e67cb01ae252f1 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Adaptive immunity Animals Antigens Chromatin Chromatin - genetics Chromatin - immunology Configurations Conformation enhancer Enhancer Elements, Genetic - genetics Enhancer Elements, Genetic - immunology Enhancers Gene expression Gene Expression Regulation - genetics Gene Expression Regulation - immunology Genes, T-Cell Receptor - genetics Genes, T-Cell Receptor - immunology Humans Immune response Lymphocytes Lymphocytes T Maturation Pathogens Peptides Regulatory sequences Review Signal transduction Signal Transduction - genetics Signal Transduction - immunology T cell receptors T-cell development T-cell receptor T-Lymphocytes - immunology Thymocytes Thymus gland Transcription Transcription, Genetic - genetics Transcription, Genetic - immunology V(D)J recombination V(D)J Recombination - genetics V(D)J Recombination - immunology Vertebrates |
title | Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20T-cell%20Receptor%20Gene%20Expression%20by%20Three-Dimensional%20Locus%20Conformation%20and%20Enhancer%20Function&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Rodr%C3%ADguez-Caparr%C3%B3s,%20Alonso&rft.date=2020-11-11&rft.volume=21&rft.issue=22&rft.spage=8478&rft.pages=8478-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21228478&rft_dat=%3Cproquest_doaj_%3E2460760746%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460881858&rft_id=info:pmid/33187197&rfr_iscdi=true |