Loading…

Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function

The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-11, Vol.21 (22), p.8478
Main Authors: Rodríguez-Caparrós, Alonso, Álvarez-Santiago, Jesús, Del Valle-Pastor, María Jesús, Suñé, Carlos, López-Ros, Jennifer, Hernández-Munain, Cristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03
cites cdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03
container_end_page
container_issue 22
container_start_page 8478
container_title International journal of molecular sciences
container_volume 21
creator Rodríguez-Caparrós, Alonso
Álvarez-Santiago, Jesús
Del Valle-Pastor, María Jesús
Suñé, Carlos
López-Ros, Jennifer
Hernández-Munain, Cristina
description The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
doi_str_mv 10.3390/ijms21228478
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7067953241134edfb7e67cb01ae252f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7067953241134edfb7e67cb01ae252f1</doaj_id><sourcerecordid>2460760746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</originalsourceid><addsrcrecordid>eNpdkl2L1DAUhoMo7ofeeS0Bb7zYar7apDeCjLPrwoCwjNchTU9mOrbJmLTi_ntTuy6zQiDhzcPDOYeD0BtKPnBek4_dYUiMMqaEVM_QORWMFYRU8vnJ-wxdpHQghHFW1i_RGedUSVrLc_TjDnZTb8YueBwc3hYW-h7fgYXjGCK-AQ94_fsYIaUZae7xdh8Bii_dAH6OTI83wU4Jr4J3IQ6LyvgWr_3eeAsRX0_ezukr9MKZPsHrh_sSfb9eb1dfi823m9vV501hcwtj4YRxLW_AGUZN3VS1c1Qq3lTQCKOEzTGAZYKaRrSulNZIKVorSlWDII7wS3S7eNtgDvoYu8HEex1Mp_8GIe60iWNne9AyD6cueZZRLqB1jYRK2oZQA6xkjmbXp8V1nJoBWgt-jKZ_In3647u93oVfWlZ1VldZ8P5BEMPPCdKohy7NQzYewpQ0ExWR-YgZffcfeghTzBNeKKWoKlWmrhbKxpBSBPdYDCV63gh9uhEZf3vawCP8bwX4HyKPs4Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460881858</pqid></control><display><type>article</type><title>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Rodríguez-Caparrós, Alonso ; Álvarez-Santiago, Jesús ; Del Valle-Pastor, María Jesús ; Suñé, Carlos ; López-Ros, Jennifer ; Hernández-Munain, Cristina</creator><creatorcontrib>Rodríguez-Caparrós, Alonso ; Álvarez-Santiago, Jesús ; Del Valle-Pastor, María Jesús ; Suñé, Carlos ; López-Ros, Jennifer ; Hernández-Munain, Cristina</creatorcontrib><description>The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21228478</identifier><identifier>PMID: 33187197</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive immunity ; Animals ; Antigens ; Chromatin ; Chromatin - genetics ; Chromatin - immunology ; Configurations ; Conformation ; enhancer ; Enhancer Elements, Genetic - genetics ; Enhancer Elements, Genetic - immunology ; Enhancers ; Gene expression ; Gene Expression Regulation - genetics ; Gene Expression Regulation - immunology ; Genes, T-Cell Receptor - genetics ; Genes, T-Cell Receptor - immunology ; Humans ; Immune response ; Lymphocytes ; Lymphocytes T ; Maturation ; Pathogens ; Peptides ; Regulatory sequences ; Review ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - immunology ; T cell receptors ; T-cell development ; T-cell receptor ; T-Lymphocytes - immunology ; Thymocytes ; Thymus gland ; Transcription ; Transcription, Genetic - genetics ; Transcription, Genetic - immunology ; V(D)J recombination ; V(D)J Recombination - genetics ; V(D)J Recombination - immunology ; Vertebrates</subject><ispartof>International journal of molecular sciences, 2020-11, Vol.21 (22), p.8478</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</citedby><cites>FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</cites><orcidid>0000-0002-7991-0458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2460881858/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2460881858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33187197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Caparrós, Alonso</creatorcontrib><creatorcontrib>Álvarez-Santiago, Jesús</creatorcontrib><creatorcontrib>Del Valle-Pastor, María Jesús</creatorcontrib><creatorcontrib>Suñé, Carlos</creatorcontrib><creatorcontrib>López-Ros, Jennifer</creatorcontrib><creatorcontrib>Hernández-Munain, Cristina</creatorcontrib><title>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.</description><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Antigens</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - immunology</subject><subject>Configurations</subject><subject>Conformation</subject><subject>enhancer</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancer Elements, Genetic - immunology</subject><subject>Enhancers</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - immunology</subject><subject>Genes, T-Cell Receptor - genetics</subject><subject>Genes, T-Cell Receptor - immunology</subject><subject>Humans</subject><subject>Immune response</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Maturation</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Regulatory sequences</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>T cell receptors</subject><subject>T-cell development</subject><subject>T-cell receptor</subject><subject>T-Lymphocytes - immunology</subject><subject>Thymocytes</subject><subject>Thymus gland</subject><subject>Transcription</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcription, Genetic - immunology</subject><subject>V(D)J recombination</subject><subject>V(D)J Recombination - genetics</subject><subject>V(D)J Recombination - immunology</subject><subject>Vertebrates</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl2L1DAUhoMo7ofeeS0Bb7zYar7apDeCjLPrwoCwjNchTU9mOrbJmLTi_ntTuy6zQiDhzcPDOYeD0BtKPnBek4_dYUiMMqaEVM_QORWMFYRU8vnJ-wxdpHQghHFW1i_RGedUSVrLc_TjDnZTb8YueBwc3hYW-h7fgYXjGCK-AQ94_fsYIaUZae7xdh8Bii_dAH6OTI83wU4Jr4J3IQ6LyvgWr_3eeAsRX0_ezukr9MKZPsHrh_sSfb9eb1dfi823m9vV501hcwtj4YRxLW_AGUZN3VS1c1Qq3lTQCKOEzTGAZYKaRrSulNZIKVorSlWDII7wS3S7eNtgDvoYu8HEex1Mp_8GIe60iWNne9AyD6cueZZRLqB1jYRK2oZQA6xkjmbXp8V1nJoBWgt-jKZ_In3647u93oVfWlZ1VldZ8P5BEMPPCdKohy7NQzYewpQ0ExWR-YgZffcfeghTzBNeKKWoKlWmrhbKxpBSBPdYDCV63gh9uhEZf3vawCP8bwX4HyKPs4Y</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Rodríguez-Caparrós, Alonso</creator><creator>Álvarez-Santiago, Jesús</creator><creator>Del Valle-Pastor, María Jesús</creator><creator>Suñé, Carlos</creator><creator>López-Ros, Jennifer</creator><creator>Hernández-Munain, Cristina</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7991-0458</orcidid></search><sort><creationdate>20201111</creationdate><title>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</title><author>Rodríguez-Caparrós, Alonso ; Álvarez-Santiago, Jesús ; Del Valle-Pastor, María Jesús ; Suñé, Carlos ; López-Ros, Jennifer ; Hernández-Munain, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Antigens</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - immunology</topic><topic>Configurations</topic><topic>Conformation</topic><topic>enhancer</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancer Elements, Genetic - immunology</topic><topic>Enhancers</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - immunology</topic><topic>Genes, T-Cell Receptor - genetics</topic><topic>Genes, T-Cell Receptor - immunology</topic><topic>Humans</topic><topic>Immune response</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Maturation</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Regulatory sequences</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>T cell receptors</topic><topic>T-cell development</topic><topic>T-cell receptor</topic><topic>T-Lymphocytes - immunology</topic><topic>Thymocytes</topic><topic>Thymus gland</topic><topic>Transcription</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcription, Genetic - immunology</topic><topic>V(D)J recombination</topic><topic>V(D)J Recombination - genetics</topic><topic>V(D)J Recombination - immunology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Caparrós, Alonso</creatorcontrib><creatorcontrib>Álvarez-Santiago, Jesús</creatorcontrib><creatorcontrib>Del Valle-Pastor, María Jesús</creatorcontrib><creatorcontrib>Suñé, Carlos</creatorcontrib><creatorcontrib>López-Ros, Jennifer</creatorcontrib><creatorcontrib>Hernández-Munain, Cristina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Caparrós, Alonso</au><au>Álvarez-Santiago, Jesús</au><au>Del Valle-Pastor, María Jesús</au><au>Suñé, Carlos</au><au>López-Ros, Jennifer</au><au>Hernández-Munain, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>21</volume><issue>22</issue><spage>8478</spage><pages>8478-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33187197</pmid><doi>10.3390/ijms21228478</doi><orcidid>https://orcid.org/0000-0002-7991-0458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-11, Vol.21 (22), p.8478
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7067953241134edfb7e67cb01ae252f1
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adaptive immunity
Animals
Antigens
Chromatin
Chromatin - genetics
Chromatin - immunology
Configurations
Conformation
enhancer
Enhancer Elements, Genetic - genetics
Enhancer Elements, Genetic - immunology
Enhancers
Gene expression
Gene Expression Regulation - genetics
Gene Expression Regulation - immunology
Genes, T-Cell Receptor - genetics
Genes, T-Cell Receptor - immunology
Humans
Immune response
Lymphocytes
Lymphocytes T
Maturation
Pathogens
Peptides
Regulatory sequences
Review
Signal transduction
Signal Transduction - genetics
Signal Transduction - immunology
T cell receptors
T-cell development
T-cell receptor
T-Lymphocytes - immunology
Thymocytes
Thymus gland
Transcription
Transcription, Genetic - genetics
Transcription, Genetic - immunology
V(D)J recombination
V(D)J Recombination - genetics
V(D)J Recombination - immunology
Vertebrates
title Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20T-cell%20Receptor%20Gene%20Expression%20by%20Three-Dimensional%20Locus%20Conformation%20and%20Enhancer%20Function&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Rodr%C3%ADguez-Caparr%C3%B3s,%20Alonso&rft.date=2020-11-11&rft.volume=21&rft.issue=22&rft.spage=8478&rft.pages=8478-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21228478&rft_dat=%3Cproquest_doaj_%3E2460760746%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-f4afd3befa21a9b69ff1783b6eb4a84ca21eec241ab4df57ca774dc4589e40f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460881858&rft_id=info:pmid/33187197&rfr_iscdi=true