Loading…
Information Fragmentation, Encryption and Information Flow in Complex Biological Networks
Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new informati...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2022-05, Vol.24 (5), p.735 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83 |
container_end_page | |
container_issue | 5 |
container_start_page | 735 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 24 |
creator | Bohm, Clifford Kirkpatrick, Douglas Cao, Victoria Adami, Christoph |
description | Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool-
-that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing. |
doi_str_mv | 10.3390/e24050735 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_706a3aef2cbb4725b9c8a185c03a833e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_706a3aef2cbb4725b9c8a185c03a833e</doaj_id><sourcerecordid>2670145850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</originalsourceid><addsrcrecordid>eNpdkc1uEzEURi0EoiWw4AXQSGxAImD7jj32BolGLUSqYAMLVta1xxMcPHbqmdD27ZkmJWpY-eceHX26HyEvGX0PoOkHz2sqaAPiETllVOt5DZQ-fnA_Ic-GYU0pB87kU3ICQnIpWXNKfi5Tl0uPY8ipuii46n0ad6931Xly5Xazm2BqqyMy5usqpGqR-030N9VZyDGvgsNYffXjdS6_h-fkSYdx8C_uzxn5cXH-ffFlfvnt83Lx6XLuaqnHubSs9Q5RMdWi0gCWSgsUhQbtGmWVYk3NlKsd6I5r24LnnWxUbQV24BTMyHLvbTOuzaaEHsutyRjM7iOXlcEyBhe9aahEQN9xZ23dcGG1U8iUcBRQAfjJ9XHv2mxt71s37aJgPJIeT1L4ZVb5j9FsyqjYJHhzLyj5auuH0fRhcD5GTD5vB8Nlw7iibGpiRl7_h67ztqRpVXcUZbVQgk7U2z3lSh6G4rtDGEbNXfnmUP7EvnqY_kD-axv-AhZxqfs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670145850</pqid></control><display><type>article</type><title>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Bohm, Clifford ; Kirkpatrick, Douglas ; Cao, Victoria ; Adami, Christoph</creator><creatorcontrib>Bohm, Clifford ; Kirkpatrick, Douglas ; Cao, Victoria ; Adami, Christoph</creatorcontrib><description>Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool-
-that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24050735</identifier><identifier>PMID: 35626617</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Behavior ; Complexity ; computational complexity ; Data processing ; Decision making ; Entropy ; Flow graphs ; Fragmentation ; Information flow ; information fragmentation ; information processing ; Information theory ; Networks ; neural network evolution ; Random variables ; Time series</subject><ispartof>Entropy (Basel, Switzerland), 2022-05, Vol.24 (5), p.735</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</citedby><cites>FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</cites><orcidid>0000-0003-4225-5362 ; 0000-0002-2915-9504 ; 0000-0002-9123-4317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670145850/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670145850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35626617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohm, Clifford</creatorcontrib><creatorcontrib>Kirkpatrick, Douglas</creatorcontrib><creatorcontrib>Cao, Victoria</creatorcontrib><creatorcontrib>Adami, Christoph</creatorcontrib><title>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool-
-that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.</description><subject>Behavior</subject><subject>Complexity</subject><subject>computational complexity</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Entropy</subject><subject>Flow graphs</subject><subject>Fragmentation</subject><subject>Information flow</subject><subject>information fragmentation</subject><subject>information processing</subject><subject>Information theory</subject><subject>Networks</subject><subject>neural network evolution</subject><subject>Random variables</subject><subject>Time series</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEURi0EoiWw4AXQSGxAImD7jj32BolGLUSqYAMLVta1xxMcPHbqmdD27ZkmJWpY-eceHX26HyEvGX0PoOkHz2sqaAPiETllVOt5DZQ-fnA_Ic-GYU0pB87kU3ICQnIpWXNKfi5Tl0uPY8ipuii46n0ad6931Xly5Xazm2BqqyMy5usqpGqR-030N9VZyDGvgsNYffXjdS6_h-fkSYdx8C_uzxn5cXH-ffFlfvnt83Lx6XLuaqnHubSs9Q5RMdWi0gCWSgsUhQbtGmWVYk3NlKsd6I5r24LnnWxUbQV24BTMyHLvbTOuzaaEHsutyRjM7iOXlcEyBhe9aahEQN9xZ23dcGG1U8iUcBRQAfjJ9XHv2mxt71s37aJgPJIeT1L4ZVb5j9FsyqjYJHhzLyj5auuH0fRhcD5GTD5vB8Nlw7iibGpiRl7_h67ztqRpVXcUZbVQgk7U2z3lSh6G4rtDGEbNXfnmUP7EvnqY_kD-axv-AhZxqfs</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>Bohm, Clifford</creator><creator>Kirkpatrick, Douglas</creator><creator>Cao, Victoria</creator><creator>Adami, Christoph</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4225-5362</orcidid><orcidid>https://orcid.org/0000-0002-2915-9504</orcidid><orcidid>https://orcid.org/0000-0002-9123-4317</orcidid></search><sort><creationdate>20220521</creationdate><title>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</title><author>Bohm, Clifford ; Kirkpatrick, Douglas ; Cao, Victoria ; Adami, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavior</topic><topic>Complexity</topic><topic>computational complexity</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Entropy</topic><topic>Flow graphs</topic><topic>Fragmentation</topic><topic>Information flow</topic><topic>information fragmentation</topic><topic>information processing</topic><topic>Information theory</topic><topic>Networks</topic><topic>neural network evolution</topic><topic>Random variables</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohm, Clifford</creatorcontrib><creatorcontrib>Kirkpatrick, Douglas</creatorcontrib><creatorcontrib>Cao, Victoria</creatorcontrib><creatorcontrib>Adami, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohm, Clifford</au><au>Kirkpatrick, Douglas</au><au>Cao, Victoria</au><au>Adami, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-05-21</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>735</spage><pages>735-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool-
-that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35626617</pmid><doi>10.3390/e24050735</doi><orcidid>https://orcid.org/0000-0003-4225-5362</orcidid><orcidid>https://orcid.org/0000-0002-2915-9504</orcidid><orcidid>https://orcid.org/0000-0002-9123-4317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2022-05, Vol.24 (5), p.735 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_706a3aef2cbb4725b9c8a185c03a833e |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Behavior Complexity computational complexity Data processing Decision making Entropy Flow graphs Fragmentation Information flow information fragmentation information processing Information theory Networks neural network evolution Random variables Time series |
title | Information Fragmentation, Encryption and Information Flow in Complex Biological Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Fragmentation,%20Encryption%20and%20Information%20Flow%20in%20Complex%20Biological%20Networks&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Bohm,%20Clifford&rft.date=2022-05-21&rft.volume=24&rft.issue=5&rft.spage=735&rft.pages=735-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24050735&rft_dat=%3Cproquest_doaj_%3E2670145850%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670145850&rft_id=info:pmid/35626617&rfr_iscdi=true |