Loading…

Information Fragmentation, Encryption and Information Flow in Complex Biological Networks

Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new informati...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2022-05, Vol.24 (5), p.735
Main Authors: Bohm, Clifford, Kirkpatrick, Douglas, Cao, Victoria, Adami, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83
cites cdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83
container_end_page
container_issue 5
container_start_page 735
container_title Entropy (Basel, Switzerland)
container_volume 24
creator Bohm, Clifford
Kirkpatrick, Douglas
Cao, Victoria
Adami, Christoph
description Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool- -that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.
doi_str_mv 10.3390/e24050735
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_706a3aef2cbb4725b9c8a185c03a833e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_706a3aef2cbb4725b9c8a185c03a833e</doaj_id><sourcerecordid>2670145850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</originalsourceid><addsrcrecordid>eNpdkc1uEzEURi0EoiWw4AXQSGxAImD7jj32BolGLUSqYAMLVta1xxMcPHbqmdD27ZkmJWpY-eceHX26HyEvGX0PoOkHz2sqaAPiETllVOt5DZQ-fnA_Ic-GYU0pB87kU3ICQnIpWXNKfi5Tl0uPY8ipuii46n0ad6931Xly5Xazm2BqqyMy5usqpGqR-030N9VZyDGvgsNYffXjdS6_h-fkSYdx8C_uzxn5cXH-ffFlfvnt83Lx6XLuaqnHubSs9Q5RMdWi0gCWSgsUhQbtGmWVYk3NlKsd6I5r24LnnWxUbQV24BTMyHLvbTOuzaaEHsutyRjM7iOXlcEyBhe9aahEQN9xZ23dcGG1U8iUcBRQAfjJ9XHv2mxt71s37aJgPJIeT1L4ZVb5j9FsyqjYJHhzLyj5auuH0fRhcD5GTD5vB8Nlw7iibGpiRl7_h67ztqRpVXcUZbVQgk7U2z3lSh6G4rtDGEbNXfnmUP7EvnqY_kD-axv-AhZxqfs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670145850</pqid></control><display><type>article</type><title>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Bohm, Clifford ; Kirkpatrick, Douglas ; Cao, Victoria ; Adami, Christoph</creator><creatorcontrib>Bohm, Clifford ; Kirkpatrick, Douglas ; Cao, Victoria ; Adami, Christoph</creatorcontrib><description>Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool- -that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24050735</identifier><identifier>PMID: 35626617</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Behavior ; Complexity ; computational complexity ; Data processing ; Decision making ; Entropy ; Flow graphs ; Fragmentation ; Information flow ; information fragmentation ; information processing ; Information theory ; Networks ; neural network evolution ; Random variables ; Time series</subject><ispartof>Entropy (Basel, Switzerland), 2022-05, Vol.24 (5), p.735</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</citedby><cites>FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</cites><orcidid>0000-0003-4225-5362 ; 0000-0002-2915-9504 ; 0000-0002-9123-4317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670145850/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670145850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35626617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohm, Clifford</creatorcontrib><creatorcontrib>Kirkpatrick, Douglas</creatorcontrib><creatorcontrib>Cao, Victoria</creatorcontrib><creatorcontrib>Adami, Christoph</creatorcontrib><title>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool- -that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.</description><subject>Behavior</subject><subject>Complexity</subject><subject>computational complexity</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Entropy</subject><subject>Flow graphs</subject><subject>Fragmentation</subject><subject>Information flow</subject><subject>information fragmentation</subject><subject>information processing</subject><subject>Information theory</subject><subject>Networks</subject><subject>neural network evolution</subject><subject>Random variables</subject><subject>Time series</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEURi0EoiWw4AXQSGxAImD7jj32BolGLUSqYAMLVta1xxMcPHbqmdD27ZkmJWpY-eceHX26HyEvGX0PoOkHz2sqaAPiETllVOt5DZQ-fnA_Ic-GYU0pB87kU3ICQnIpWXNKfi5Tl0uPY8ipuii46n0ad6931Xly5Xazm2BqqyMy5usqpGqR-030N9VZyDGvgsNYffXjdS6_h-fkSYdx8C_uzxn5cXH-ffFlfvnt83Lx6XLuaqnHubSs9Q5RMdWi0gCWSgsUhQbtGmWVYk3NlKsd6I5r24LnnWxUbQV24BTMyHLvbTOuzaaEHsutyRjM7iOXlcEyBhe9aahEQN9xZ23dcGG1U8iUcBRQAfjJ9XHv2mxt71s37aJgPJIeT1L4ZVb5j9FsyqjYJHhzLyj5auuH0fRhcD5GTD5vB8Nlw7iibGpiRl7_h67ztqRpVXcUZbVQgk7U2z3lSh6G4rtDGEbNXfnmUP7EvnqY_kD-axv-AhZxqfs</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>Bohm, Clifford</creator><creator>Kirkpatrick, Douglas</creator><creator>Cao, Victoria</creator><creator>Adami, Christoph</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4225-5362</orcidid><orcidid>https://orcid.org/0000-0002-2915-9504</orcidid><orcidid>https://orcid.org/0000-0002-9123-4317</orcidid></search><sort><creationdate>20220521</creationdate><title>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</title><author>Bohm, Clifford ; Kirkpatrick, Douglas ; Cao, Victoria ; Adami, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavior</topic><topic>Complexity</topic><topic>computational complexity</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Entropy</topic><topic>Flow graphs</topic><topic>Fragmentation</topic><topic>Information flow</topic><topic>information fragmentation</topic><topic>information processing</topic><topic>Information theory</topic><topic>Networks</topic><topic>neural network evolution</topic><topic>Random variables</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohm, Clifford</creatorcontrib><creatorcontrib>Kirkpatrick, Douglas</creatorcontrib><creatorcontrib>Cao, Victoria</creatorcontrib><creatorcontrib>Adami, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohm, Clifford</au><au>Kirkpatrick, Douglas</au><au>Cao, Victoria</au><au>Adami, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Fragmentation, Encryption and Information Flow in Complex Biological Networks</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-05-21</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>735</spage><pages>735-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool- -that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35626617</pmid><doi>10.3390/e24050735</doi><orcidid>https://orcid.org/0000-0003-4225-5362</orcidid><orcidid>https://orcid.org/0000-0002-2915-9504</orcidid><orcidid>https://orcid.org/0000-0002-9123-4317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2022-05, Vol.24 (5), p.735
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_706a3aef2cbb4725b9c8a185c03a833e
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central
subjects Behavior
Complexity
computational complexity
Data processing
Decision making
Entropy
Flow graphs
Fragmentation
Information flow
information fragmentation
information processing
Information theory
Networks
neural network evolution
Random variables
Time series
title Information Fragmentation, Encryption and Information Flow in Complex Biological Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Fragmentation,%20Encryption%20and%20Information%20Flow%20in%20Complex%20Biological%20Networks&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Bohm,%20Clifford&rft.date=2022-05-21&rft.volume=24&rft.issue=5&rft.spage=735&rft.pages=735-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24050735&rft_dat=%3Cproquest_doaj_%3E2670145850%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-6b1decaa818da8933b06b30a5939c78b8817418c4c39f29bd3e2f6784b5af3c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670145850&rft_id=info:pmid/35626617&rfr_iscdi=true