Loading…
Mental Stress Management Using fNIRS Directed Connectivity and Audio Stimulation
In this study, we propose a method to enhance cognitive vigilance and mitigate mental stress in the workplace. We designed an experiment to induce stress by putting participants through Stroop Color-Word Task (SCWT) under time constraint and negative feedback. Then, we used 16 Hz binaural beats audi...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2023-01, Vol.31, p.1086-1096 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we propose a method to enhance cognitive vigilance and mitigate mental stress in the workplace. We designed an experiment to induce stress by putting participants through Stroop Color-Word Task (SCWT) under time constraint and negative feedback. Then, we used 16 Hz binaural beats auditory stimulation (BBs) for 10 minutes to enhance cognitive vigilance and mitigate stress. Functional Near-Infrared Spectroscopy (fNIRS), salivary alpha-amylase, and behavioral reactions were used to determine the stress level. The level of stress was assessed using reaction time to stimuli (RT), accuracy of target detection, directed functional connectivity based on partial directed coherence, graph theory measures, and the laterality index (LI). We discovered that 16 Hz BBs mitigated mental stress by substantially increasing the target detection accuracy by 21.83% ( {p} < 0.001 ) and decreasing salivary alpha amylase levels by 30.28% ( {p} < 0.01 ). The partial directed coherence, graph theory analysis measures, and LI results indicated that mental stress decreased information flow from the left to the right prefrontal cortex under stress, whereas the 16 Hz BBs had a major impact on enhancing vigilance and mitigating mental stress via boosting connectivity network on the dorsolateral and left ventrolateral prefrontal cortex. |
---|---|
ISSN: | 1534-4320 1558-0210 |
DOI: | 10.1109/TNSRE.2023.3239913 |