Loading…

Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors

Exploring the temperature-dependent photoluminescence (PL) properties of quantum dots (QDs) is not only important for understanding the carrier recombination processes in QD-based devices but also critical for expanding their special applications at different temperatures. However, there is still no...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-11, Vol.22 (22), p.8993
Main Authors: Tang, Luping, Zhang, Yangyang, Liao, Chen, Guo, Yingqing, Lu, Yingtao, Xia, Yixuan, Liu, Yiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exploring the temperature-dependent photoluminescence (PL) properties of quantum dots (QDs) is not only important for understanding the carrier recombination processes in QD-based devices but also critical for expanding their special applications at different temperatures. However, there is still no clear understanding of the optical properties of CdS/ZnS core/shell QDs as a function of temperature. Herein, the temperature-dependent PL spectra of CdS/ZnS core/shell QDs were studied in the temperature range of 77-297 K. It was found that the band-edge emission (BEE) intensity decreases continuously with increasing temperature, while the surface-state emission (SSE) intensity first increases and then decreases. For BEE intensity, in the low temperature range, a small activation energy (29.5 meV) in the nonradiative recombination process led to the decrease of PL intensity of CdS/ZnS core/shell QDs; and at high temperature the PL intensity attenuation was caused by the thermal escape process. On the other hand, the temperature-dependent variation trend of the SSE intensity was determined by the competition of the trapping process of the surface trap states and the effect of thermally activated non-radiative defects. As the temperature increased, the PL spectra showed a certain degree of redshift in the peak energies of both band-edge and surface states and the PL spectrum full width at half-maximum (FWHM) increases, which was mainly due to the coupling of exciton and acoustic phonon. Furthermore, the CIE chromaticity coordinates turned from (0.190, 0.102) to (0.302, 0.194), which changed dramatically with temperature. The results indicated that the CdS/ZnS core/shell QDs are expected to be applied in temperature sensors.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22228993