Loading…
Discrete Element Model Building and Optimization of Tomato Stalks at Harvest
The mechanical properties of tomato stalk, relevant to the harvesting and crushing of tomato vines, significantly impact its harvesting quality and efficiency. Establishing a simulation model, which accurately mirrors these properties, is foundational for designing related mechanical components. The...
Saved in:
Published in: | Agriculture (Basel) 2024-04, Vol.14 (4), p.531 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanical properties of tomato stalk, relevant to the harvesting and crushing of tomato vines, significantly impact its harvesting quality and efficiency. Establishing a simulation model, which accurately mirrors these properties, is foundational for designing related mechanical components. The discrete element method models tomato stalk harvesting and is optimized through mechanical tests and simulations. A blend of Plackett–Burman, steepest ascent, and central composite design modeling identified three contact model parameters influencing the maximum stalk shear force. The optimal values of these three parameters were a normal stiffness of 1.04 × 1010 N m−3, tangential stiffness of 7.59 × 109 N m−3, and bond radius of 1.06 mm. The relative error in the simulated versus measured shear force was |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture14040531 |