Loading…
Predictive Equation for Basal Metabolic Rate in Normal-Weight Chinese Adults
This study aimed to develop a predictive equation for basal metabolic rate (BMR) in normal-weight Chinese adults and provide a reference for establishing the national recommended dietary energy intake. A new equation for BMR was derived from a sample of 516 normal-weight Chinese adults (men = 253, w...
Saved in:
Published in: | Nutrients 2023-09, Vol.15 (19), p.4185 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to develop a predictive equation for basal metabolic rate (BMR) in normal-weight Chinese adults and provide a reference for establishing the national recommended dietary energy intake. A new equation for BMR was derived from a sample of 516 normal-weight Chinese adults (men = 253, women = 263), and this sample was collected from two previous studies. Furthermore, the accuracy of this new equation and eight other previous predictive equations was reviewed. The agreement and reliability were compared in terms of bias, accuracy, the intraclass correlation coefficient, and Bland-Altman plots between predictive equations. In addition, the newly developed equation was further verified using a small independent sample, which contained 41 healthy Chinese adults (men = 21, women = 20). The measured BMR (mBMR) of all participants, measured using indirect calorimetry, was 1346.2 ± 358.0 kcal/d. Thirty participants were excluded based on Cook's distance criteria (Cook's distance of ≥0.008). Previous equations developed by Henry, Schofield, Harris-Benedict (H-B), Yang, and Hong overestimated the BMR of healthy Chinese adults. The present equation displayed the smallest average bias (0.2 kcal/d) between the mBMR and predicted basal metabolic rate (pBMR). The limits of agreement of the present equation from Bland-Altman plots were -514.3 kcal/d and 513.9 kcal/d, which is the most narrow and balanced limit of agreement. Moreover, in the verification of the testing database, the pBMR of the new equation was not significantly different from the mBMR, and the accuracy was 75.6%. Compared with pre-existing equations, the present equation is more applicable to the prediction of BMR in healthy Chinese adults. However, further studies are required to verify the accuracy of this new equation. |
---|---|
ISSN: | 2072-6643 2072-6643 |
DOI: | 10.3390/nu15194185 |