Loading…
Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum
Rapid diagnostic tests (RDTs) that detect histidine-rich protein 2 (PfHRP2) are used throughout Africa for the diagnosis of Plasmodium falciparum malaria. However, recent reports indicate that parasites lacking the pfhrp2 and/or histidine-rich protein 3 (pfhrp3) genes, which produce antigens detecte...
Saved in:
Published in: | Malaria journal 2018-04, Vol.17 (1), p.137-137, Article 137 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rapid diagnostic tests (RDTs) that detect histidine-rich protein 2 (PfHRP2) are used throughout Africa for the diagnosis of Plasmodium falciparum malaria. However, recent reports indicate that parasites lacking the pfhrp2 and/or histidine-rich protein 3 (pfhrp3) genes, which produce antigens detected by these RDTs, are common in select regions of South America, Asia, and Africa. Proving the absence of a gene is challenging, and multiple PCR assays targeting these genes have been described. A detailed characterization and comparison of published assays is needed to facilitate robust and streamlined testing approaches.
Among six pfhrp2 and pfhrp3 PCR assays tested, the lower limit of detection ranged from 0.01 pg/µL to 0.1 ng/µL of P. falciparum 3D7 strain DNA, or approximately 0.4-4000 parasite genomes/µL. By lowering the elongation temperature to 60 °C, a tenfold improvement in the limit of detection and/or darker bands for all exon 1 targets and for the first-round reaction of a single exon 2 target was achieved. Additionally, assays targeting exon 1 of either gene yielded spurious amplification of the paralogous gene. Using these data, an optimized testing algorithm for the detection of pfhrp2- and pfhrp3-negative P. falciparum is proposed.
Surveillance of pfhrp2- and pfhrp3-negative P. falciparum requires careful laboratory workflows. PCR-based testing methods coupled with microscopy and/or antigen testing serve as useful tools to support policy development. Standardized approaches to the detection of pfhrp2- and pfhrp3-negative P. falciparum should inform efforts to define the impact of these parasites. |
---|---|
ISSN: | 1475-2875 1475-2875 |
DOI: | 10.1186/s12936-018-2287-4 |