Loading…

HIGHLY LOCALIZED AZIMUTHAL MEASUREMENTS IN THE CROCUS REACTOR TOWARDS THE VALIDATION OF HIGH-FIDELITY NEUTRONICS CODES

Highly localized in-core measurements are necessary for the validation of neutron transport calculations with high spatial resolution. In the present work, a miniature neutron detector developed at EPFL in collaboration with PSI was used to carry out a set of thermal neutrons counting measurements i...

Full description

Saved in:
Bibliographic Details
Published in:EPJ Web of conferences 2021-01, Vol.247, p.8014
Main Authors: Vitullo, Fanny, Lamirand, Vincent, Frajtag, Pavel, Perret, Gregory, Pautz, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highly localized in-core measurements are necessary for the validation of neutron transport calculations with high spatial resolution. In the present work, a miniature neutron detector developed at EPFL in collaboration with PSI was used to carry out a set of thermal neutrons counting measurements in the zero-power CROCUS reactor core within a spatial range in order of mm. The miniature detector, positioned close to the core reflector, shows a gradient of +(4.29 ± 0.10)% in the count rate profile in the radial direction within 1.3 cm, with higher values pointing towards the core reflector because of the higher share of neutrons in the thermal range. On the contrary, in a control rod guide tube the count rate gradient is -(4.37 ± 0.10)% and it is directed towards the core center. The measured values are compared with the azimuthal trend of the normalized 6Li reaction rate calculated with an iterative three-steps method performed with the Monte Carlo code Serpent 2. These measurements proved the feasibility of resolving spatial effects in the mm-range and they represent a basis for further investigating highly spatially-resolved phenomena in the CROCUS core.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202124708014