Loading…
Equivariant filtering framework for inertial-integrated navigation
This paper proposes an Equivariant Filtering (EqF) framework for the inertial-integrated state estimation. As the kinematic system of the inertial-integrated navigation can be naturally modeled on the matrix Lie group SE 2 (3), the symmetry of the Lie group can be exploited to design an equivariant...
Saved in:
Published in: | Satellite navigation 2021-12, Vol.2 (1), p.1-17, Article 30 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an Equivariant Filtering (EqF) framework for the inertial-integrated state estimation. As the kinematic system of the inertial-integrated navigation can be naturally modeled on the matrix Lie group
SE
2
(3), the symmetry of the Lie group can be exploited to design an equivariant filter which extends the invariant extended Kalman filtering on the group-affine system and overcomes the inconsitency issue of the traditional extend Kalman filter. We firstly formulate the inertial-integrated dynamics as the group-affine systems. Then, we prove the left equivariant properties of the inertial-integrated dynamics. Finally, we design an equivariant filtering framework on the earth-centered earth-fixed frame and the local geodetic navigation frame. The experiments show the superiority of the proposed filters when confronting large misalignment angles in Global Navigation Satellite Navigation (GNSS)/Inertial Navigation System (INS) loosely integrated navigation experiments. |
---|---|
ISSN: | 2662-1363 2662-1363 |
DOI: | 10.1186/s43020-021-00061-z |