Loading…

Hierarchical information-based clustering for connectivity-based cortex parcellation

One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics 2011-09, Vol.5, p.18-18
Main Authors: Gorbach, Nico S, Schütte, Christoph, Melzer, Corina, Goldau, Mathias, Sujazow, Olivia, Jitsev, Jenia, Douglas, Tania, Tittgemeyer, Marc
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4748-b990de8b6aff2ed492a8de536c5fbeee7934abe7df03121499911b037435eaa43
cites
container_end_page 18
container_issue
container_start_page 18
container_title Frontiers in neuroinformatics
container_volume 5
creator Gorbach, Nico S
Schütte, Christoph
Melzer, Corina
Goldau, Mathias
Sujazow, Olivia
Jitsev, Jenia
Douglas, Tania
Tittgemeyer, Marc
description One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas.
doi_str_mv 10.3389/fninf.2011.00018
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_70e67598b2aa4ce7bd4d8876d5eb975a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_70e67598b2aa4ce7bd4d8876d5eb975a</doaj_id><sourcerecordid>2295472890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4748-b990de8b6aff2ed492a8de536c5fbeee7934abe7df03121499911b037435eaa43</originalsourceid><addsrcrecordid>eNpdkctP3DAQxiNUVCj0zqmK1ENPWfyIX5dKFWoLElIvcLb8mCxeZe2tnSD472uygKCnsWa-76fxfE1zhtGKUqnOhxjisCII4xVCCMuD5hhzTjqGFf_w5n3UfCplgxAnnImPzRHBSgiE2XFzcxkgm-zugjNjW2kpb80UUuysKeBbN85lghziuq2j1qUYwU3hPkyPL4qUJ3hodxUC47h4T5vDwYwFPj_Xk-b218-bi8vu-s_vq4sf153rRS87qxTyIC03w0DA94oY6YFR7thgAUAo2hsLwg-IYoJ7pRTGFlHRUwbG9PSkudpzfTIbvctha_KjTibopZHyWps8BTeCFgi4YEpaUo0OhPW9l1Jwz8AqwUxlfd-zdrPdgncQp2zGd9D3kxju9Drda4qFlJhUwLdnQE5_ZyiT3oaynCRCmouWikvCFZFV-fU_5SbNOdZLaUIU6wWRClUV2qtcTqVkGF53wUg_pa-X9PVT-npJv1q-vP3Dq-ElbvoPvQCuWQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295472890</pqid></control><display><type>article</type><title>Hierarchical information-based clustering for connectivity-based cortex parcellation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Gorbach, Nico S ; Schütte, Christoph ; Melzer, Corina ; Goldau, Mathias ; Sujazow, Olivia ; Jitsev, Jenia ; Douglas, Tania ; Tittgemeyer, Marc</creator><creatorcontrib>Gorbach, Nico S ; Schütte, Christoph ; Melzer, Corina ; Goldau, Mathias ; Sujazow, Olivia ; Jitsev, Jenia ; Douglas, Tania ; Tittgemeyer, Marc</creatorcontrib><description>One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas.</description><identifier>ISSN: 1662-5196</identifier><identifier>EISSN: 1662-5196</identifier><identifier>DOI: 10.3389/fninf.2011.00018</identifier><identifier>PMID: 21977015</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Brain architecture ; Brain research ; Clustering ; cortex parcellation ; diffusion tractography ; Frontal gyrus ; hierarchical clustering ; Information Theory ; Localization ; Neural networks ; Neuroscience ; Precentral gyrus</subject><ispartof>Frontiers in neuroinformatics, 2011-09, Vol.5, p.18-18</ispartof><rights>2011. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.frontiersin.org/articles/10.3389/fninf.2011.00018 .</rights><rights>Copyright © 2011 Gorbach, Schütte, Melzer, Goldau, Sujazow, Jitsev, Douglas and Tittgemeyer. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4748-b990de8b6aff2ed492a8de536c5fbeee7934abe7df03121499911b037435eaa43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2295472890/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2295472890?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21977015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorbach, Nico S</creatorcontrib><creatorcontrib>Schütte, Christoph</creatorcontrib><creatorcontrib>Melzer, Corina</creatorcontrib><creatorcontrib>Goldau, Mathias</creatorcontrib><creatorcontrib>Sujazow, Olivia</creatorcontrib><creatorcontrib>Jitsev, Jenia</creatorcontrib><creatorcontrib>Douglas, Tania</creatorcontrib><creatorcontrib>Tittgemeyer, Marc</creatorcontrib><title>Hierarchical information-based clustering for connectivity-based cortex parcellation</title><title>Frontiers in neuroinformatics</title><addtitle>Front Neuroinform</addtitle><description>One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas.</description><subject>Brain architecture</subject><subject>Brain research</subject><subject>Clustering</subject><subject>cortex parcellation</subject><subject>diffusion tractography</subject><subject>Frontal gyrus</subject><subject>hierarchical clustering</subject><subject>Information Theory</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Neuroscience</subject><subject>Precentral gyrus</subject><issn>1662-5196</issn><issn>1662-5196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctP3DAQxiNUVCj0zqmK1ENPWfyIX5dKFWoLElIvcLb8mCxeZe2tnSD472uygKCnsWa-76fxfE1zhtGKUqnOhxjisCII4xVCCMuD5hhzTjqGFf_w5n3UfCplgxAnnImPzRHBSgiE2XFzcxkgm-zugjNjW2kpb80UUuysKeBbN85lghziuq2j1qUYwU3hPkyPL4qUJ3hodxUC47h4T5vDwYwFPj_Xk-b218-bi8vu-s_vq4sf153rRS87qxTyIC03w0DA94oY6YFR7thgAUAo2hsLwg-IYoJ7pRTGFlHRUwbG9PSkudpzfTIbvctha_KjTibopZHyWps8BTeCFgi4YEpaUo0OhPW9l1Jwz8AqwUxlfd-zdrPdgncQp2zGd9D3kxju9Drda4qFlJhUwLdnQE5_ZyiT3oaynCRCmouWikvCFZFV-fU_5SbNOdZLaUIU6wWRClUV2qtcTqVkGF53wUg_pa-X9PVT-npJv1q-vP3Dq-ElbvoPvQCuWQ</recordid><startdate>20110923</startdate><enddate>20110923</enddate><creator>Gorbach, Nico S</creator><creator>Schütte, Christoph</creator><creator>Melzer, Corina</creator><creator>Goldau, Mathias</creator><creator>Sujazow, Olivia</creator><creator>Jitsev, Jenia</creator><creator>Douglas, Tania</creator><creator>Tittgemeyer, Marc</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110923</creationdate><title>Hierarchical information-based clustering for connectivity-based cortex parcellation</title><author>Gorbach, Nico S ; Schütte, Christoph ; Melzer, Corina ; Goldau, Mathias ; Sujazow, Olivia ; Jitsev, Jenia ; Douglas, Tania ; Tittgemeyer, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4748-b990de8b6aff2ed492a8de536c5fbeee7934abe7df03121499911b037435eaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Brain architecture</topic><topic>Brain research</topic><topic>Clustering</topic><topic>cortex parcellation</topic><topic>diffusion tractography</topic><topic>Frontal gyrus</topic><topic>hierarchical clustering</topic><topic>Information Theory</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Neuroscience</topic><topic>Precentral gyrus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbach, Nico S</creatorcontrib><creatorcontrib>Schütte, Christoph</creatorcontrib><creatorcontrib>Melzer, Corina</creatorcontrib><creatorcontrib>Goldau, Mathias</creatorcontrib><creatorcontrib>Sujazow, Olivia</creatorcontrib><creatorcontrib>Jitsev, Jenia</creatorcontrib><creatorcontrib>Douglas, Tania</creatorcontrib><creatorcontrib>Tittgemeyer, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbach, Nico S</au><au>Schütte, Christoph</au><au>Melzer, Corina</au><au>Goldau, Mathias</au><au>Sujazow, Olivia</au><au>Jitsev, Jenia</au><au>Douglas, Tania</au><au>Tittgemeyer, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical information-based clustering for connectivity-based cortex parcellation</atitle><jtitle>Frontiers in neuroinformatics</jtitle><addtitle>Front Neuroinform</addtitle><date>2011-09-23</date><risdate>2011</risdate><volume>5</volume><spage>18</spage><epage>18</epage><pages>18-18</pages><issn>1662-5196</issn><eissn>1662-5196</eissn><abstract>One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>21977015</pmid><doi>10.3389/fninf.2011.00018</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5196
ispartof Frontiers in neuroinformatics, 2011-09, Vol.5, p.18-18
issn 1662-5196
1662-5196
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_70e67598b2aa4ce7bd4d8876d5eb975a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Brain architecture
Brain research
Clustering
cortex parcellation
diffusion tractography
Frontal gyrus
hierarchical clustering
Information Theory
Localization
Neural networks
Neuroscience
Precentral gyrus
title Hierarchical information-based clustering for connectivity-based cortex parcellation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20information-based%20clustering%20for%20connectivity-based%20cortex%20parcellation&rft.jtitle=Frontiers%20in%20neuroinformatics&rft.au=Gorbach,%20Nico%20S&rft.date=2011-09-23&rft.volume=5&rft.spage=18&rft.epage=18&rft.pages=18-18&rft.issn=1662-5196&rft.eissn=1662-5196&rft_id=info:doi/10.3389/fninf.2011.00018&rft_dat=%3Cproquest_doaj_%3E2295472890%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4748-b990de8b6aff2ed492a8de536c5fbeee7934abe7df03121499911b037435eaa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2295472890&rft_id=info:pmid/21977015&rfr_iscdi=true