Loading…

Generation of a Highly Efficient Electrode for Ethanol Oxidation by Simply Electrodepositing Palladium on the Oxygen Plasma-Treated Carbon Fiber Paper

In this study, a highly efficient carbon-supported Pd catalyst for the direct ethanol fuel cell was developed by electrodepositing nanostructured Pd on oxygen plasma-treated carbon fiber paper (Pd/pCFP). The oxygen plasma treatment has been shown to effectively remove the surface organic contaminant...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2021-02, Vol.11 (2), p.248
Main Authors: Pei, Houg-Yuan, Lin, Chen-Han, Lin, Wei, Yuan, Chiun-Jye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a highly efficient carbon-supported Pd catalyst for the direct ethanol fuel cell was developed by electrodepositing nanostructured Pd on oxygen plasma-treated carbon fiber paper (Pd/pCFP). The oxygen plasma treatment has been shown to effectively remove the surface organic contaminants and add oxygen species onto the CFP to facilitate the deposition of nano-structured Pd on the surface of carbon fibers. Under the optimized and controllable electrodeposition method, nanostructured Pd of ~10 nm can be easily and evenly deposited onto the CFP. The prepared Pd/pCFP electrode exhibited an extraordinarily high electrocatalytic activity towards ethanol oxidation, with a current density of 222.8 mA mg−1 Pd. Interestingly, the electrode also exhibited a high tolerance to poisoning species and long-term stability, with a high ratio of the forward anodic peak current density to the backward anodic peak current density. These results suggest that the Pd/pCFP catalyst may be a promising anodic material for the development of highly efficient direct alcohol fuel cells.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal11020248