Loading…

Endothelial Progenitor-Cell-Derived Exosomes Induced by Astragaloside IV Accelerate Type I Diabetic-wound Healing via the PI3K/AKT/mTOR Pathway in Rats

We explore the effects of endothelial progenitor cell (EPC)-derived exosomes (EPCexos) and of astragaloside IV (ASIV)-stimulated EPCexos (ASIV-EPCexos) on type I diabetic-wound healing, and determine the basic molecular mechanisms of action. EPCs were exposed to different concentrations of ASIV to g...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioscience (Landmark. Print) 2023-11, Vol.28 (11), p.282-282
Main Authors: Xiong, Wu, Bai, Xue, Zhang, Xi, Lei, Huajuan, Xiao, Hui, Zhang, Luyao, Xiao, Yuting, Yang, Qianpei, Zou, Xiaoling
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore the effects of endothelial progenitor cell (EPC)-derived exosomes (EPCexos) and of astragaloside IV (ASIV)-stimulated EPCexos (ASIV-EPCexos) on type I diabetic-wound healing, and determine the basic molecular mechanisms of action. EPCs were exposed to different concentrations of ASIV to generate ASIV-EPCexos. A chronic-wound healing model involving streptozotocin-stimulated diabetic rats was established. These rats were treated with EPCexos, ASIV-EPCexos, rapamycin, and wortmannin. Wound healing was evaluated by direct photographic observation, hematoxylin and eosin staining, and Masson's trichrome staining. ASIV treatment increased the abilities of EPCs (e.g., proliferation), as well as exosome secretion. EPCexo showed a "cup holder" like structure. Treatment with ASIV-EPCexos increased the wound-healing rate, collagen-deposition area, bromodeoxyuridine uptake, VEGF expression, and the number of CD31- and αSMA- positive cells, whereas decreased epidermal thickness and CD45 expression. The expression of the PI3K/AKT/mTOR pathway increased, whereas the expression of inflammatory factor decreased. However, rapamycin and wortmannin reversed these changes. ASIV-EPCexos may accelerate type I diabetic-wound healing via the PI3K/AKT/mTOR pathway. This study may lay the foundation for new clinical treatment options for patients with type I diabetic wounds.
ISSN:2768-6701
2768-6698
DOI:10.31083/j.fbl2811282