Loading…
The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System
This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant ele...
Saved in:
Published in: | E3S Web of Conferences 2019-01, Vol.118, p.2054 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3 |
container_end_page | |
container_issue | |
container_start_page | 2054 |
container_title | E3S Web of Conferences |
container_volume | 118 |
creator | Li, Jingli Qi, Wannian Yang, Jun He, Yi Luo, Jingru Guo, Su |
description | This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel. |
doi_str_mv | 10.1051/e3sconf/201911802054 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_712e1ece760b4e91bf919bce61d5363e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_712e1ece760b4e91bf919bce61d5363e</doaj_id><sourcerecordid>2301957679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</originalsourceid><addsrcrecordid>eNpNkd1LwzAUxYsoKLr_wIeAz9XcNB_toww_BgMHG4hPIU1vZsbW1DQq9a-3OpE9ncvl8LuXc7LsEug1UAE3WPQ2tO6GUagASsqo4EfZGWNS5cA4Oz6YT7NJ328opcBEySk_y15Wr0impjPWp4E8dcnv_JdJPrQkOPLs2yZfvIYUPsI2GW_z0R53ZkvuWozrgSxTiGaN5HGoo2_IInxiJMuhT7i7yE6c2fY4-dPzbHV_t5o-5vOnh9n0dp7bgkqey5pJ5yp01qFltrJSKQAGiishVckbJbgphRmlbkwjrRWuLASDCiVwU5xnsz22CWaju-h3Jg46GK9_FyGutYnJ2y1qBQwBLSpJa44V1K6CqrYjpxGFLHBkXe1ZXQxv79gnvQnvsR2_16wY4xVKqmp08b3LxtD3Ed3_VaD6pxL9V4k-rKT4BgMQf9I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301957679</pqid></control><display><type>article</type><title>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</title><source>Publicly Available Content Database</source><creator>Li, Jingli ; Qi, Wannian ; Yang, Jun ; He, Yi ; Luo, Jingru ; Guo, Su</creator><contributor>Weerasinghe, R. ; Wu, J. ; Weng, C.-H.</contributor><creatorcontrib>Li, Jingli ; Qi, Wannian ; Yang, Jun ; He, Yi ; Luo, Jingru ; Guo, Su ; Weerasinghe, R. ; Wu, J. ; Weng, C.-H.</creatorcontrib><description>This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/201911802054</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Algorithms ; Alternative energy ; Electric power systems ; Electricity ; Electricity consumption ; Energy conservation ; Energy management ; Energy storage ; Energy transmission ; Hybrid systems ; Optimization ; Particle swarm optimization ; Photovoltaics ; Renewable energy ; Steam electric power generation ; Steam turbines ; Subsystems ; Thermal energy ; Turbines ; Wind ; Wind power generation</subject><ispartof>E3S Web of Conferences, 2019-01, Vol.118, p.2054</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</citedby><cites>FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2301957679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Weerasinghe, R.</contributor><contributor>Wu, J.</contributor><contributor>Weng, C.-H.</contributor><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Qi, Wannian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><creatorcontrib>Luo, Jingru</creatorcontrib><creatorcontrib>Guo, Su</creatorcontrib><title>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</title><title>E3S Web of Conferences</title><description>This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.</description><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Electric power systems</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Energy conservation</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Energy transmission</subject><subject>Hybrid systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Photovoltaics</subject><subject>Renewable energy</subject><subject>Steam electric power generation</subject><subject>Steam turbines</subject><subject>Subsystems</subject><subject>Thermal energy</subject><subject>Turbines</subject><subject>Wind</subject><subject>Wind power generation</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1LwzAUxYsoKLr_wIeAz9XcNB_toww_BgMHG4hPIU1vZsbW1DQq9a-3OpE9ncvl8LuXc7LsEug1UAE3WPQ2tO6GUagASsqo4EfZGWNS5cA4Oz6YT7NJ328opcBEySk_y15Wr0impjPWp4E8dcnv_JdJPrQkOPLs2yZfvIYUPsI2GW_z0R53ZkvuWozrgSxTiGaN5HGoo2_IInxiJMuhT7i7yE6c2fY4-dPzbHV_t5o-5vOnh9n0dp7bgkqey5pJ5yp01qFltrJSKQAGiishVckbJbgphRmlbkwjrRWuLASDCiVwU5xnsz22CWaju-h3Jg46GK9_FyGutYnJ2y1qBQwBLSpJa44V1K6CqrYjpxGFLHBkXe1ZXQxv79gnvQnvsR2_16wY4xVKqmp08b3LxtD3Ed3_VaD6pxL9V4k-rKT4BgMQf9I</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Jingli</creator><creator>Qi, Wannian</creator><creator>Yang, Jun</creator><creator>He, Yi</creator><creator>Luo, Jingru</creator><creator>Guo, Su</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20190101</creationdate><title>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</title><author>Li, Jingli ; Qi, Wannian ; Yang, Jun ; He, Yi ; Luo, Jingru ; Guo, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Electric power systems</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Energy conservation</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Energy transmission</topic><topic>Hybrid systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Photovoltaics</topic><topic>Renewable energy</topic><topic>Steam electric power generation</topic><topic>Steam turbines</topic><topic>Subsystems</topic><topic>Thermal energy</topic><topic>Turbines</topic><topic>Wind</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Qi, Wannian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><creatorcontrib>Luo, Jingru</creatorcontrib><creatorcontrib>Guo, Su</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S Web of Conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingli</au><au>Qi, Wannian</au><au>Yang, Jun</au><au>He, Yi</au><au>Luo, Jingru</au><au>Guo, Su</au><au>Weerasinghe, R.</au><au>Wu, J.</au><au>Weng, C.-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</atitle><jtitle>E3S Web of Conferences</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>118</volume><spage>2054</spage><pages>2054-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/201911802054</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S Web of Conferences, 2019-01, Vol.118, p.2054 |
issn | 2267-1242 2555-0403 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_712e1ece760b4e91bf919bce61d5363e |
source | Publicly Available Content Database |
subjects | Algorithms Alternative energy Electric power systems Electricity Electricity consumption Energy conservation Energy management Energy storage Energy transmission Hybrid systems Optimization Particle swarm optimization Photovoltaics Renewable energy Steam electric power generation Steam turbines Subsystems Thermal energy Turbines Wind Wind power generation |
title | The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Capacity%20Optimization%20of%20Wind-Photovoltaic-Thermal%20Energy%20Storage%20Hybrid%20Power%20System&rft.jtitle=E3S%20Web%20of%20Conferences&rft.au=Li,%20Jingli&rft.date=2019-01-01&rft.volume=118&rft.spage=2054&rft.pages=2054-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/201911802054&rft_dat=%3Cproquest_doaj_%3E2301957679%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301957679&rft_id=info:pmid/&rfr_iscdi=true |