Loading…

The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System

This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant ele...

Full description

Saved in:
Bibliographic Details
Published in:E3S Web of Conferences 2019-01, Vol.118, p.2054
Main Authors: Li, Jingli, Qi, Wannian, Yang, Jun, He, Yi, Luo, Jingru, Guo, Su
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3
cites cdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3
container_end_page
container_issue
container_start_page 2054
container_title E3S Web of Conferences
container_volume 118
creator Li, Jingli
Qi, Wannian
Yang, Jun
He, Yi
Luo, Jingru
Guo, Su
description This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.
doi_str_mv 10.1051/e3sconf/201911802054
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_712e1ece760b4e91bf919bce61d5363e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_712e1ece760b4e91bf919bce61d5363e</doaj_id><sourcerecordid>2301957679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</originalsourceid><addsrcrecordid>eNpNkd1LwzAUxYsoKLr_wIeAz9XcNB_toww_BgMHG4hPIU1vZsbW1DQq9a-3OpE9ncvl8LuXc7LsEug1UAE3WPQ2tO6GUagASsqo4EfZGWNS5cA4Oz6YT7NJ328opcBEySk_y15Wr0impjPWp4E8dcnv_JdJPrQkOPLs2yZfvIYUPsI2GW_z0R53ZkvuWozrgSxTiGaN5HGoo2_IInxiJMuhT7i7yE6c2fY4-dPzbHV_t5o-5vOnh9n0dp7bgkqey5pJ5yp01qFltrJSKQAGiishVckbJbgphRmlbkwjrRWuLASDCiVwU5xnsz22CWaju-h3Jg46GK9_FyGutYnJ2y1qBQwBLSpJa44V1K6CqrYjpxGFLHBkXe1ZXQxv79gnvQnvsR2_16wY4xVKqmp08b3LxtD3Ed3_VaD6pxL9V4k-rKT4BgMQf9I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301957679</pqid></control><display><type>article</type><title>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</title><source>Publicly Available Content Database</source><creator>Li, Jingli ; Qi, Wannian ; Yang, Jun ; He, Yi ; Luo, Jingru ; Guo, Su</creator><contributor>Weerasinghe, R. ; Wu, J. ; Weng, C.-H.</contributor><creatorcontrib>Li, Jingli ; Qi, Wannian ; Yang, Jun ; He, Yi ; Luo, Jingru ; Guo, Su ; Weerasinghe, R. ; Wu, J. ; Weng, C.-H.</creatorcontrib><description>This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/201911802054</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Algorithms ; Alternative energy ; Electric power systems ; Electricity ; Electricity consumption ; Energy conservation ; Energy management ; Energy storage ; Energy transmission ; Hybrid systems ; Optimization ; Particle swarm optimization ; Photovoltaics ; Renewable energy ; Steam electric power generation ; Steam turbines ; Subsystems ; Thermal energy ; Turbines ; Wind ; Wind power generation</subject><ispartof>E3S Web of Conferences, 2019-01, Vol.118, p.2054</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</citedby><cites>FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2301957679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Weerasinghe, R.</contributor><contributor>Wu, J.</contributor><contributor>Weng, C.-H.</contributor><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Qi, Wannian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><creatorcontrib>Luo, Jingru</creatorcontrib><creatorcontrib>Guo, Su</creatorcontrib><title>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</title><title>E3S Web of Conferences</title><description>This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.</description><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Electric power systems</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Energy conservation</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Energy transmission</subject><subject>Hybrid systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Photovoltaics</subject><subject>Renewable energy</subject><subject>Steam electric power generation</subject><subject>Steam turbines</subject><subject>Subsystems</subject><subject>Thermal energy</subject><subject>Turbines</subject><subject>Wind</subject><subject>Wind power generation</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1LwzAUxYsoKLr_wIeAz9XcNB_toww_BgMHG4hPIU1vZsbW1DQq9a-3OpE9ncvl8LuXc7LsEug1UAE3WPQ2tO6GUagASsqo4EfZGWNS5cA4Oz6YT7NJ328opcBEySk_y15Wr0impjPWp4E8dcnv_JdJPrQkOPLs2yZfvIYUPsI2GW_z0R53ZkvuWozrgSxTiGaN5HGoo2_IInxiJMuhT7i7yE6c2fY4-dPzbHV_t5o-5vOnh9n0dp7bgkqey5pJ5yp01qFltrJSKQAGiishVckbJbgphRmlbkwjrRWuLASDCiVwU5xnsz22CWaju-h3Jg46GK9_FyGutYnJ2y1qBQwBLSpJa44V1K6CqrYjpxGFLHBkXe1ZXQxv79gnvQnvsR2_16wY4xVKqmp08b3LxtD3Ed3_VaD6pxL9V4k-rKT4BgMQf9I</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Jingli</creator><creator>Qi, Wannian</creator><creator>Yang, Jun</creator><creator>He, Yi</creator><creator>Luo, Jingru</creator><creator>Guo, Su</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20190101</creationdate><title>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</title><author>Li, Jingli ; Qi, Wannian ; Yang, Jun ; He, Yi ; Luo, Jingru ; Guo, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Electric power systems</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Energy conservation</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Energy transmission</topic><topic>Hybrid systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Photovoltaics</topic><topic>Renewable energy</topic><topic>Steam electric power generation</topic><topic>Steam turbines</topic><topic>Subsystems</topic><topic>Thermal energy</topic><topic>Turbines</topic><topic>Wind</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Qi, Wannian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><creatorcontrib>Luo, Jingru</creatorcontrib><creatorcontrib>Guo, Su</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S Web of Conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingli</au><au>Qi, Wannian</au><au>Yang, Jun</au><au>He, Yi</au><au>Luo, Jingru</au><au>Guo, Su</au><au>Weerasinghe, R.</au><au>Wu, J.</au><au>Weng, C.-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System</atitle><jtitle>E3S Web of Conferences</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>118</volume><spage>2054</spage><pages>2054-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/201911802054</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S Web of Conferences, 2019-01, Vol.118, p.2054
issn 2267-1242
2555-0403
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_712e1ece760b4e91bf919bce61d5363e
source Publicly Available Content Database
subjects Algorithms
Alternative energy
Electric power systems
Electricity
Electricity consumption
Energy conservation
Energy management
Energy storage
Energy transmission
Hybrid systems
Optimization
Particle swarm optimization
Photovoltaics
Renewable energy
Steam electric power generation
Steam turbines
Subsystems
Thermal energy
Turbines
Wind
Wind power generation
title The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Capacity%20Optimization%20of%20Wind-Photovoltaic-Thermal%20Energy%20Storage%20Hybrid%20Power%20System&rft.jtitle=E3S%20Web%20of%20Conferences&rft.au=Li,%20Jingli&rft.date=2019-01-01&rft.volume=118&rft.spage=2054&rft.pages=2054-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/201911802054&rft_dat=%3Cproquest_doaj_%3E2301957679%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3064-6b26ff9efcfec2c9c677112174756784d754a85a754bdad6cc5f835219e614a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301957679&rft_id=info:pmid/&rfr_iscdi=true