Loading…
High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces
In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3521 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173 |
container_end_page | |
container_issue | 11 |
container_start_page | 3521 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Sun, Qingyu Zhang, Shaojie Dong, Guoya Pei, Weihua Gao, Xiaorong Wang, Yijun |
description | In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli. |
doi_str_mv | 10.3390/s24113521 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7135a7e891f144438c89902386787451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797903305</galeid><doaj_id>oai_doaj_org_article_7135a7e891f144438c89902386787451</doaj_id><sourcerecordid>A797903305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173</originalsourceid><addsrcrecordid>eNptks1uEzEQx1cIREvhwAsgS1zgsMVfu_aeUElTGqkIpAJXy_XOJi5eO9jeSn0LHhmHlChByJLtGf_mP57RVNVLgk8Z6_C7RDkhrKHkUXVMOOW1pBQ_3rsfVc9SusWYMsbk0-qISdlxRshx9evSLlf1Ofhk8z2aOzA5BvAG1ivtwjLqEV1oY53NOkNCeQXoHHKhbPAoDOh61M6h62zHyVlkPZqFHupPoZ9cCejRd5sm7dD8Lvwo1peQwWdbHB-itr6ehXE9ZYho4cs-aAPpefVk0C7Bi4fzpPp2Mf86u6yvPn9czM6uasOpyLVgPQE6cDmYG6kFtEBb0bQGjNCmpbobOAgtCAbBuNSYQN9ubCBGDD0R7KRabHX7oG_VOtpRx3sVtFV_HCEulY7ZGgdKlN6WFLIjA-GcM2lk15VeylZIwRtStN5vtdbTzQi9KTVG7Q5ED1-8XalluFOEENGQhhaFNw8KMfycIGU12mTAOe0hTEkxLLDEtJGbj7_-B70NU_SlV4VqBeeYkD1qqUsF1g-hJDYbUXUmOtFhxnBTqNP_UGX1MFoTPAy2-A8C3m4DTAwpRRh2RRKsNrOodrNY2Ff7XdmRf4eP_Qb8rdiJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067440117</pqid></control><display><type>article</type><title>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Sun, Qingyu ; Zhang, Shaojie ; Dong, Guoya ; Pei, Weihua ; Gao, Xiaorong ; Wang, Yijun</creator><creatorcontrib>Sun, Qingyu ; Zhang, Shaojie ; Dong, Guoya ; Pei, Weihua ; Gao, Xiaorong ; Wang, Yijun</creatorcontrib><description>In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24113521</identifier><identifier>PMID: 38894311</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adult ; Algorithms ; Brain-Computer Interfaces ; brain–computer interface ; code-modulated visual evoked potential ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Evoked Potentials, Visual - physiology ; Experiments ; Female ; high-density EEG ; Humans ; Layouts ; Male ; Personal computers ; Photic Stimulation ; Signal Processing, Computer-Assisted ; small stimulus ; Young Adult</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3521</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173</cites><orcidid>0000-0002-1784-7852 ; 0000-0002-1631-0199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067440117/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067440117?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Qingyu</creatorcontrib><creatorcontrib>Zhang, Shaojie</creatorcontrib><creatorcontrib>Dong, Guoya</creatorcontrib><creatorcontrib>Pei, Weihua</creatorcontrib><creatorcontrib>Gao, Xiaorong</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><title>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain-Computer Interfaces</subject><subject>brain–computer interface</subject><subject>code-modulated visual evoked potential</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Experiments</subject><subject>Female</subject><subject>high-density EEG</subject><subject>Humans</subject><subject>Layouts</subject><subject>Male</subject><subject>Personal computers</subject><subject>Photic Stimulation</subject><subject>Signal Processing, Computer-Assisted</subject><subject>small stimulus</subject><subject>Young Adult</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1uEzEQx1cIREvhwAsgS1zgsMVfu_aeUElTGqkIpAJXy_XOJi5eO9jeSn0LHhmHlChByJLtGf_mP57RVNVLgk8Z6_C7RDkhrKHkUXVMOOW1pBQ_3rsfVc9SusWYMsbk0-qISdlxRshx9evSLlf1Ofhk8z2aOzA5BvAG1ivtwjLqEV1oY53NOkNCeQXoHHKhbPAoDOh61M6h62zHyVlkPZqFHupPoZ9cCejRd5sm7dD8Lvwo1peQwWdbHB-itr6ehXE9ZYho4cs-aAPpefVk0C7Bi4fzpPp2Mf86u6yvPn9czM6uasOpyLVgPQE6cDmYG6kFtEBb0bQGjNCmpbobOAgtCAbBuNSYQN9ubCBGDD0R7KRabHX7oG_VOtpRx3sVtFV_HCEulY7ZGgdKlN6WFLIjA-GcM2lk15VeylZIwRtStN5vtdbTzQi9KTVG7Q5ED1-8XalluFOEENGQhhaFNw8KMfycIGU12mTAOe0hTEkxLLDEtJGbj7_-B70NU_SlV4VqBeeYkD1qqUsF1g-hJDYbUXUmOtFhxnBTqNP_UGX1MFoTPAy2-A8C3m4DTAwpRRh2RRKsNrOodrNY2Ff7XdmRf4eP_Qb8rdiJ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Sun, Qingyu</creator><creator>Zhang, Shaojie</creator><creator>Dong, Guoya</creator><creator>Pei, Weihua</creator><creator>Gao, Xiaorong</creator><creator>Wang, Yijun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1784-7852</orcidid><orcidid>https://orcid.org/0000-0002-1631-0199</orcidid></search><sort><creationdate>20240530</creationdate><title>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</title><author>Sun, Qingyu ; Zhang, Shaojie ; Dong, Guoya ; Pei, Weihua ; Gao, Xiaorong ; Wang, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain-Computer Interfaces</topic><topic>brain–computer interface</topic><topic>code-modulated visual evoked potential</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Experiments</topic><topic>Female</topic><topic>high-density EEG</topic><topic>Humans</topic><topic>Layouts</topic><topic>Male</topic><topic>Personal computers</topic><topic>Photic Stimulation</topic><topic>Signal Processing, Computer-Assisted</topic><topic>small stimulus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qingyu</creatorcontrib><creatorcontrib>Zhang, Shaojie</creatorcontrib><creatorcontrib>Dong, Guoya</creatorcontrib><creatorcontrib>Pei, Weihua</creatorcontrib><creatorcontrib>Gao, Xiaorong</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qingyu</au><au>Zhang, Shaojie</au><au>Dong, Guoya</au><au>Pei, Weihua</au><au>Gao, Xiaorong</au><au>Wang, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>24</volume><issue>11</issue><spage>3521</spage><pages>3521-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894311</pmid><doi>10.3390/s24113521</doi><orcidid>https://orcid.org/0000-0002-1784-7852</orcidid><orcidid>https://orcid.org/0000-0002-1631-0199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3521 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7135a7e891f144438c89902386787451 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Adult Algorithms Brain-Computer Interfaces brain–computer interface code-modulated visual evoked potential Electrodes Electroencephalography Electroencephalography - methods Evoked Potentials, Visual - physiology Experiments Female high-density EEG Humans Layouts Male Personal computers Photic Stimulation Signal Processing, Computer-Assisted small stimulus Young Adult |
title | High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Density%20Electroencephalogram%20Facilitates%20the%20Detection%20of%20Small%20Stimuli%20in%20Code-Modulated%20Visual%20Evoked%20Potential%20Brain-Computer%20Interfaces&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sun,%20Qingyu&rft.date=2024-05-30&rft.volume=24&rft.issue=11&rft.spage=3521&rft.pages=3521-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24113521&rft_dat=%3Cgale_doaj_%3EA797903305%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067440117&rft_id=info:pmid/38894311&rft_galeid=A797903305&rfr_iscdi=true |