Loading…

High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces

In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3521
Main Authors: Sun, Qingyu, Zhang, Shaojie, Dong, Guoya, Pei, Weihua, Gao, Xiaorong, Wang, Yijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173
container_end_page
container_issue 11
container_start_page 3521
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Sun, Qingyu
Zhang, Shaojie
Dong, Guoya
Pei, Weihua
Gao, Xiaorong
Wang, Yijun
description In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.
doi_str_mv 10.3390/s24113521
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7135a7e891f144438c89902386787451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797903305</galeid><doaj_id>oai_doaj_org_article_7135a7e891f144438c89902386787451</doaj_id><sourcerecordid>A797903305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173</originalsourceid><addsrcrecordid>eNptks1uEzEQx1cIREvhwAsgS1zgsMVfu_aeUElTGqkIpAJXy_XOJi5eO9jeSn0LHhmHlChByJLtGf_mP57RVNVLgk8Z6_C7RDkhrKHkUXVMOOW1pBQ_3rsfVc9SusWYMsbk0-qISdlxRshx9evSLlf1Ofhk8z2aOzA5BvAG1ivtwjLqEV1oY53NOkNCeQXoHHKhbPAoDOh61M6h62zHyVlkPZqFHupPoZ9cCejRd5sm7dD8Lvwo1peQwWdbHB-itr6ehXE9ZYho4cs-aAPpefVk0C7Bi4fzpPp2Mf86u6yvPn9czM6uasOpyLVgPQE6cDmYG6kFtEBb0bQGjNCmpbobOAgtCAbBuNSYQN9ubCBGDD0R7KRabHX7oG_VOtpRx3sVtFV_HCEulY7ZGgdKlN6WFLIjA-GcM2lk15VeylZIwRtStN5vtdbTzQi9KTVG7Q5ED1-8XalluFOEENGQhhaFNw8KMfycIGU12mTAOe0hTEkxLLDEtJGbj7_-B70NU_SlV4VqBeeYkD1qqUsF1g-hJDYbUXUmOtFhxnBTqNP_UGX1MFoTPAy2-A8C3m4DTAwpRRh2RRKsNrOodrNY2Ff7XdmRf4eP_Qb8rdiJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067440117</pqid></control><display><type>article</type><title>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Sun, Qingyu ; Zhang, Shaojie ; Dong, Guoya ; Pei, Weihua ; Gao, Xiaorong ; Wang, Yijun</creator><creatorcontrib>Sun, Qingyu ; Zhang, Shaojie ; Dong, Guoya ; Pei, Weihua ; Gao, Xiaorong ; Wang, Yijun</creatorcontrib><description>In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24113521</identifier><identifier>PMID: 38894311</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adult ; Algorithms ; Brain-Computer Interfaces ; brain–computer interface ; code-modulated visual evoked potential ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Evoked Potentials, Visual - physiology ; Experiments ; Female ; high-density EEG ; Humans ; Layouts ; Male ; Personal computers ; Photic Stimulation ; Signal Processing, Computer-Assisted ; small stimulus ; Young Adult</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3521</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173</cites><orcidid>0000-0002-1784-7852 ; 0000-0002-1631-0199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067440117/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067440117?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Qingyu</creatorcontrib><creatorcontrib>Zhang, Shaojie</creatorcontrib><creatorcontrib>Dong, Guoya</creatorcontrib><creatorcontrib>Pei, Weihua</creatorcontrib><creatorcontrib>Gao, Xiaorong</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><title>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain-Computer Interfaces</subject><subject>brain–computer interface</subject><subject>code-modulated visual evoked potential</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Experiments</subject><subject>Female</subject><subject>high-density EEG</subject><subject>Humans</subject><subject>Layouts</subject><subject>Male</subject><subject>Personal computers</subject><subject>Photic Stimulation</subject><subject>Signal Processing, Computer-Assisted</subject><subject>small stimulus</subject><subject>Young Adult</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1uEzEQx1cIREvhwAsgS1zgsMVfu_aeUElTGqkIpAJXy_XOJi5eO9jeSn0LHhmHlChByJLtGf_mP57RVNVLgk8Z6_C7RDkhrKHkUXVMOOW1pBQ_3rsfVc9SusWYMsbk0-qISdlxRshx9evSLlf1Ofhk8z2aOzA5BvAG1ivtwjLqEV1oY53NOkNCeQXoHHKhbPAoDOh61M6h62zHyVlkPZqFHupPoZ9cCejRd5sm7dD8Lvwo1peQwWdbHB-itr6ehXE9ZYho4cs-aAPpefVk0C7Bi4fzpPp2Mf86u6yvPn9czM6uasOpyLVgPQE6cDmYG6kFtEBb0bQGjNCmpbobOAgtCAbBuNSYQN9ubCBGDD0R7KRabHX7oG_VOtpRx3sVtFV_HCEulY7ZGgdKlN6WFLIjA-GcM2lk15VeylZIwRtStN5vtdbTzQi9KTVG7Q5ED1-8XalluFOEENGQhhaFNw8KMfycIGU12mTAOe0hTEkxLLDEtJGbj7_-B70NU_SlV4VqBeeYkD1qqUsF1g-hJDYbUXUmOtFhxnBTqNP_UGX1MFoTPAy2-A8C3m4DTAwpRRh2RRKsNrOodrNY2Ff7XdmRf4eP_Qb8rdiJ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Sun, Qingyu</creator><creator>Zhang, Shaojie</creator><creator>Dong, Guoya</creator><creator>Pei, Weihua</creator><creator>Gao, Xiaorong</creator><creator>Wang, Yijun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1784-7852</orcidid><orcidid>https://orcid.org/0000-0002-1631-0199</orcidid></search><sort><creationdate>20240530</creationdate><title>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</title><author>Sun, Qingyu ; Zhang, Shaojie ; Dong, Guoya ; Pei, Weihua ; Gao, Xiaorong ; Wang, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain-Computer Interfaces</topic><topic>brain–computer interface</topic><topic>code-modulated visual evoked potential</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Experiments</topic><topic>Female</topic><topic>high-density EEG</topic><topic>Humans</topic><topic>Layouts</topic><topic>Male</topic><topic>Personal computers</topic><topic>Photic Stimulation</topic><topic>Signal Processing, Computer-Assisted</topic><topic>small stimulus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qingyu</creatorcontrib><creatorcontrib>Zhang, Shaojie</creatorcontrib><creatorcontrib>Dong, Guoya</creatorcontrib><creatorcontrib>Pei, Weihua</creatorcontrib><creatorcontrib>Gao, Xiaorong</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qingyu</au><au>Zhang, Shaojie</au><au>Dong, Guoya</au><au>Pei, Weihua</au><au>Gao, Xiaorong</au><au>Wang, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>24</volume><issue>11</issue><spage>3521</spage><pages>3521-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894311</pmid><doi>10.3390/s24113521</doi><orcidid>https://orcid.org/0000-0002-1784-7852</orcidid><orcidid>https://orcid.org/0000-0002-1631-0199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3521
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7135a7e891f144438c89902386787451
source PubMed (Medline); Publicly Available Content Database
subjects Adult
Algorithms
Brain-Computer Interfaces
brain–computer interface
code-modulated visual evoked potential
Electrodes
Electroencephalography
Electroencephalography - methods
Evoked Potentials, Visual - physiology
Experiments
Female
high-density EEG
Humans
Layouts
Male
Personal computers
Photic Stimulation
Signal Processing, Computer-Assisted
small stimulus
Young Adult
title High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Density%20Electroencephalogram%20Facilitates%20the%20Detection%20of%20Small%20Stimuli%20in%20Code-Modulated%20Visual%20Evoked%20Potential%20Brain-Computer%20Interfaces&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sun,%20Qingyu&rft.date=2024-05-30&rft.volume=24&rft.issue=11&rft.spage=3521&rft.pages=3521-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24113521&rft_dat=%3Cgale_doaj_%3EA797903305%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-73d1e2f48fcb8a7e6e26756cec7ac62a9f4e7a710e7348a01ed67a71e1c7fd173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067440117&rft_id=info:pmid/38894311&rft_galeid=A797903305&rfr_iscdi=true